"Advd8I1 (OHVAI) INV OL NdNL3Iy

L2LL-INY




The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy
Commission, Argonne Universities Association and The University of Chicago, the University
employs the staff and operates the Laboratory in accordance with policies and programs formu-
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Atomic Energy Commission, nor any
of their employees, nor any of their contractors, subcontrac-
tors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that
its use would not infringe privately-owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Rowal Road
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.95



ANL-7727
Mathematics and Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

PENETRATION AND CASCADE PHENOMENA
by

G. Zgrablich

Applied Mathematics Division

August 1970

Based on a Thesis Presented to the Faculty of Sciences of the
Universidad Nacional de Cuyo, San Luis, Argentina,
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in the Field of Stochastic Processes and Physics






ABSTRIAGT NS

it

II.

AL

AN

TABLE OF CONTENTS

REVIEW OF PENETRATION PHENOMENA. . ... ... .. R

AL

Introduetion (Bt S Et Lt L L L L e s e s e e e e e

BOSReview of \Gollision. BVEntS .f0. v tles e oo o w ol BRACNA,

IS Electiromagnetic Inferachions ... . . . s = = s 25 2 2 e mp
2. Multiple Particle Production at Very High Energy . . ..

PART ONE--LOW-ENERGY PHENOMENA

SO PPINGIPROBABITRIFS (80 o9 o o s ottty gt il - ot o) wigatl -
T T O C G L IO o o e T I s R B e
B. Integral Equation for the Stopping Probability. . ... ... ..
C. Pure Jump Process with Finite Collision Rate .. .'. . ... ..
D. Effective Range Distribution in Simple Cases. . . ... .. ..
B Possible GeneraliZzations ™, - ile s ci- b e s o i e s e e oo s
SEHESIONLZA T NACASCADIFE S STt s s E s i s i et
A. Introduction and Summary. . . ... .. B T O e
BiSiEheorvikof ithel JonivationsCascade 0. . e & e vois e
C. Computation of the Cascade Number Distributions. . . . . . .
D. Relation between Primary Energy Loss and Number of
Jon=Painséin. Primhamya@ascade skl s i ae® S0k apl . i S
PART TWO--HIGH-ENERGY PHENOMENA
MULTIPLE-PARTICLE PRODUCTION IN STRONG INTER-

AEIE NS ATV BR Y HIGHHSR NI RGN Ca e e st Lt i
AR T O TG LT OIS ey Sl e G SV s e o, o
B. " The {Fhermodynamical Model of Hagedorn . . . . L ... ..o o,
@R et =tethpe raturesModell g, (s DS
D. Angular Distribution in Log Tan (9*/2) ..............
E. High-energy Interaction Models and Their Relation to

Fireballs

10

10
11

11
12

14

14
55
19
21
24

24

24
25
29

55

39

39
39
41
42

44



TABLE OF CONTENTS

F. Tmelasticity Distribution. . ... . < aoi e

Gr. Multiplicity Distributiont s s e

H.  ConecluBion S iiiu fin s eis o o s o o it e e SRR S e
V. THE NUCLEAR ACTIVE COMPONENT OF EXTENSIVE

ATR SHOWERS .« 0 i ot ot e o o B S e N e i
U, s> 14 00wy % 1) 3 SRS SIS Vs S S e RS PE N
Mathem atical o rml o g o s e St
The Pion~link Method . i i oidiais it e v 2 4 v n onis pial e

Particles Production Cross Sections and Results. . . . . . ..

moawp

Discussiontand ConclBIONS 1o i i ot st s st S

APPENDIX. A FORTRAN IV Program to Compute the Lateral
Structure Function of the N-component of
Eien BV eBATCHShoWem s o n o S el Tt e e N

1. Definition of the Most Relevent Quantities Involved in
He¥rooma oo Srs i S iiin S O e e S A

2. Description of the Program

3. FORTRAN IV Program

ACKNOWLEDGMENTS

REFERENCES

45
47
48

49

49
50
55
55
58

60

60
62
65

45

74



EO.

11,

12.

13.

14.

L5,

16,

et

18.

LIST OF FIGURES
Title

RepiresEnralicn ol iStopPINg Ranges. . . i h o . o oo v s o e ms o
Probabilities q(E)

Probabilities Q) and SR e I Y A
RistebutioniR(WamliGivent by Eqis i 3im i it v o8 Jo weded Divas

Comparison of the Distribution P(v, T) of Fig. 4 to the Landau
Distribution

Comparison of the Distribution P(v, 7) to the Landau Dis-
tribution with the Most Probable Value of v Given by the
EdEReioutiont B(QRn)eees o ones ik L s L e Sl

(B o Seve ral SUBSEATCES &y 5e o o o o S il s, s e 9B

p)
Computed T(U) and Approximation to n(U) Given by Eq. 49. . . .

Angular Distribution Function F(x), for x > 0 for Different
Values of T at E; = 3000 GeV and m = 0.141 GeV/cZ .......

Angular Distribution Function F(x), for x > 0 for Different
Values of E; (primary energy) at T, = 0.14 GeV and
oyl = ] e A e R A S s e

Polar Representation of the Angular Distribution Function
in Terms of the Angle 6* in the CMS, for Different Values
OfeE ¥(Drimarylene rowy e Blac S B arss 8 DN e Sl Ol R e

Pion Inelasticity Distribution in the CMS for Different Models
difca Brimacyiine ngviof BO0DNGEV: 5 0 iy v i e o xS0 e SRl o

Pion Inelasticity Distribution in the CMS for the Two-
temperature Model at Different Values of Primary Energy . . .

Pion Multiplicity Distribution at Different Values of the
Parameter @, Compared with Experimental Results
(e imair te el o o b o b b St e S

Spatial and Angular Coordinates for the Three-dimensional
(8 o S e e e A e I S T R o o b g, e e et

Integral Lateral Structure Function for the Atmosphere at
B B U EET s st A e R R el Sl e

Integral Lateral Structure Function for the Ionization
Calorimeter at E; = 1O G o e S e s | e

Integral Lateral Structure Function for the Atmosphere at
B MU B0 L ot e S S

33

34
37
3

43

43

44

46

47

48

50

5if

27

517



152

20,

21.

2RY

23

LIST OF FIGURES
Title

Integral Lateral Structure Function for the Ionization

Calorimeteriat By = 102 CleV i -, o e SR e

Integral Lateral Structure Function for the Atmosphere

at E, = L0 GeVii ol o i ot § 1 S M R

Integral Lateral Structure Function for the Ionization

EaloTimeteriat Bous: 10 G eV A I S

Number of Particles per Unit Area as a Function of the

P rimary Enerpy at Different Vialueshof tr o b i i LS

Flow: Chaztifor! RORTRAN TVIEP rograimyss. e El S iy oy

Page

54
58
58

58
63




LIST OF TABLES
. Title

I. Stopping Probability in Very Simple Cases

II. Calculated Values of Mean Energy Spent by the Primary in
Creating One Ion Pair

III. Parameters for Production Cross Sections

56






PENETRATION AND CASCADE PHENOMENA
by

G. Zgrablich*

ABSTRACT

This work treats two penetration-phenomena prob-
lems at low energies and two at very high energies:

1. The stopping probability in a material of a given
thickness. The corresponding integro-differential equation
is shown to have a regular solution accounting for a finite
number of collisions, and a singular solution representing
the contribution from an infinite number of collisions. The

general solution is unique if and only if the singular solution
is identically zero.

2. The ionization cascade produced by a charged
particle. The distribution of ion-pairs produced is computed
and can be approximated by the Landauuniversaldistribution
for energy loss by ionization. The mean number of ion pairs
conditional on a given energy loss by the primary is shown
to be linear and independent of primary energy, varying little
with the nature of the absorber. The computed energy loss
perion-pair producedisingood agreeme‘n’c with experiments.

3. Multiple particle production models at cosmic-
ray energies and their predictions for quantities such as
inelasticity and multiplicity distributions. Special attention

is paid to the two-temperature model.

4. The three-dimensional nucleon-pion cascade,
solved by a semianalytical method, practical for numerical
computation. The lateral structure function for the nuclear
active component of extensive air showers is computed for
several values of the incident energy and is compared to
Monte Carlo calculations and to experimental results.

*Resident Student Assaciate, Dec 1967--Nov 1969, with a Fellowship of the National Research Council
of Argentina. Now at Universidad Nacional de Cuyo, Facultad de Ciencias, San Luis, Argentina.



10

I. REVIEW OF PENETRATION PHENOMENA

A, Introduction

The observation of the phenomena that occur when a particle }?ene-
trates a material has been one of the main sources for fundamental dis-
coveries in modern physics and for the understanding of the structure of

matter and of particles themselves.

In general, since the effect of the material on the penetrz?t.ing :
particles is statistical in nature, one is interested in the probability dis-
tributions of their number and states, as a function of time or of the dis-
tance traveled, and quantities related to experimental observations that
depend on these distributions.

The large variety of collision events that should be taken into
account in a complete theory of the penetration of particles into matter
would make it impossible to obtain practical results. However, to a good
approximation, the effects of some types of collisions can be separated
from the effects of other types of collisions. Therefore we can consider
separately a number of penetration phenomena in each of which only a few
types of interactions are relevant to the quantities to be calculated. This
will become clear in Section B below when we discuss some of the main
types of collisions that can occur when energetic particles penetrate a
medium.

The discussion of these problems will be much simplified by the
following assumptions:

1. The total number of penetrating particles is much less than the
number of collision centers in the medium.

2. The effects of the particles on the medium are negligible; we
only consider the effects of the medium on the particles.

3. The collision events are independent of each other.

. 4. Collective effects are neglected (each collision event is con-
sidered as an isolated event)

5. The collision events are instantaneous.

e int(;/\tswa0 rsisult. of 1':he assurr.lptions, we can split the mathematical prob-
it O steps: Flrstf obtam.the elementary probability distributions
or e'colhsmn events (differential cross sections), and then find the
Rrobabllity distributions of the number of states of the particles. The

first part involves the physic
second belongs to the classic
suggest the use of the theory

al analysis of the interaction process, the
al statistical theory (assumptions 3 and 4
of Markov processes).



B. Review of Collision Events

Two kinds of interactions, electromagnetic and strong, are of
importance to penetration phenomena.

Electromagnetic interactions are, in general, well understood, and
we will briefly summarize their main characteristics.

Strong interactions present challenging problems, especially at
very high energies. Among them, the problem of multiple-particle pro-
duction is of special interest for the penetration of particles into matter
(in this case in the cosmic-ray showers phenomena) and will be discussed
more extensively.

1. Electromagnetic Interactions

Different situations can be distinguished according to the
impact parameter b of the collision (see Ref. 1 or 2):

a. b >> atomic distances

Here the spin of the colliding particle is not taken into
account, and we consider the scattering with the atom as a whole.

b. b~ atomic distances

Here the main contribution comes from the inelastic scat-
tering with atomic electrons. The main phenomenon that occurs is ioniza-
tion. The results will be different, according to the mass and spin of the
incident particle. If the energy loss is large, the electrons of the atom
can be considered as free; otherwise, the binding energy should be taken
into account. Compton and photoelectric effects occur if the incident
particle is a photon.

c. b << atomic distances

Here the nucleus plays the most important role as a scat-
tering center.

The change in direction of motion of the incident particle
becomes important because of the Coulomb interaction with the nucleus.
Furthermore, two very important phenomena occur: bremsstrahlung

(radiation process) and pair-creation (creation of a pair (e™,e”) by a photon).

All these types of collisions contribute with very different
weights to the several phenomena one wants to describe.

151
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Ionization phenomena, which are important at low energies
(< few MeV), are covered by collisions of types a and b. Here we are
interested in obtaining the probability distributions of energy losses, ion
pairs, and range. At low energy, collisions of type ¢ do not intervene

except for multiple scattering.

At higher energies (say =108 eV), we become more interested
in cascade phenomena (electron-photon cascades) which are covered by
collisions of type c. Here collisions of types a and b are unimportant;
even the Compton effect is negligible in this case.

A quantitative and extensive coverage of electromagnetic inter-
actions, as applied to penetration phenomena, appears in Refsi =3¢

2. Multiple Particle Production at Very High Energy

Multiple production of particles in strong interactions begins
at a few GeV. The particles that are capable of strong interactions are
called hadrons (protons, neutrons, m mesons, K mesons, A particles, etc.).

Here we have only an empirical picture of the phenomenon and
will summarize the main characteristics.

a. Momentum Distribution of Secondaries. To a good approxi-
mation, the longitudinal and transversal momenta in the center-of-mass
system (CMS) can be considered as independent radom variables. Then the
CMS momentum distribution can be expressed as a product f(p¥)g(p¥). The
CMS longitudinal momentum distribution f(pz) dp¥ seems to follow an
exponential law, say (I/a) exp(-apz); the CMS transversal momentum dis-
tribution g(p%") is better represented by

*
const p%"yze'bpt .

where a and b are parameters of the interaction.

e A striking feature is that the mean transversal momentum
(pt ) is generally observed to be independent of the initial energy of the
incident particle ((p,;") ~ 0.4 GeV).
- bt InelasticiT‘:y. Inelasticity is a random variable defined as

=1 g E}/Eo, where E is the energy carried away by the incident particle
and E, is its initial energy. The inelasticity has a mean value which
depends on the mass of the incident particle ((K*) ~0.5 for nucleons
~0.9 for pions) and has wide fluctuations. :



c. Multiplicity. Multiplicity is a random variable which
represents the number of secondary particles created in an interaction.
Its mean value depends on the energy of the primary through either one
of the laws

{(n) = const E¥* (n) = const log E,.

(Experiments cannot distinguish between them.) As in the case of inelas-
ticity, the multiplicity has wide fluctuations. Its distribution can be approxi-
mately expressed as nce'dn, where ¢ and d are parameters depending on
the type of secondaries considered and on the primary energy.

In describing penetration phenomena in which strong inter-
actions at very high energy occur (nucleon-pion cascade), collisions 1 and 2
of the electromagnetic interaction type are completely irrelevant and col-
lisions 3 are rather complementary (nucleon-pion + electron-photon
cascades). General review articles on these interactions, as related to
cosmic ray showers, appear in Refs. 4 and 5.

In what follows we shall divide the discussion of penetration
phenomena into two parts: low-energy and high-energy phenomena.

In Part One, two typical problems will be discussed: stopping
probabilities and ionization cascades.

In Part Two, we shall analyze the multiple production of par-
ticles with special interestin the two-temperature model of high-energy
interactions and then treat the three-dimensional nucleon-pion cascade
problem. -

In each chapter, one section will be dedicated to summarizing
the results obtained, and this will be used instead of a general summary.

15



PART ONE
LOW-ENERGY PHENOMENA

II. STOPPING PROBABILITIES

A. Introduction

When a particle having energy E, enters a medium, it loses energy
in the collisions with the atoms of the material and eventually stops. The
thickness of material traversed by the particle until it stops is called the
projected range Ry, of the particle in the material. We shall use the term
range generically to denote, in addition to the projected range:

1. The effective range R, which is the total path length traversed
by the scattered particle.

2. The lateral range R,, which is the distance from the end of the
path of the particle to the axis perpendicular to the surface of the material

through the point of penetration.
The relation between the various ranges is shown in Fig. 1.

z For the same particle with
the same E; in the same material,
the range can take different values;
that is, it shows fluctuations, and we

are interested in its probability dis-
tribution (stopping probability).

Because of their importance
in particle detection, radiation damage
" in solids, etc., range-energy relations
have been extensively studied by
e ko several authors®™® from a phenome-
nological point of view.

Q

Fig. 1. Representation of Stopping Ranges
; . Our aim is to present a sys-
tematic and rigorous treatment of stopping probabilities, based on the
general theory of first-passage processes developed by Moyal.!?

: We will show that the stopping probability T satisfies an integral
equation which reduces to the well-known backward integro-differential
eq\._lation in the case of finite collision rate. We will briefly discuss the
existence and uniqueness of solutions ‘and solve the equation in some simple
Fases. It will turn out that T is a sum of two terms, MR and 84, where |
is the .regular solution of the integral equation and involves a finite numbeP;-
of Cf)lhsions, and 6 represents the contribution from an infinite number of
collisions. The solution will be unique if 6, = 0.



B. Integral Equation for the Stopping Probability

The idea of obtaining a general formulation for the stopping proba-
bility can be outlined as follows. We define the probability that a particle
in a given state* makes its first passage through a general surface in the
three-dimensional space. Then the total first-passage probability will be
the probability that the particle makes its first passage through that surface
in any state, and one minus this quantity will be the probability that the par-
ticle is stopped before making its first passage through the given surface.

Let X be the set of all possible positions x (the three-dimensional
Cartesian space) and V (state space) the set of all intrinsic physical
observables v (i.e., momentum, energy, spin, etc.) of a given particle,
and call the ordered pair w = (v,x) its phase. The space Q = V X X will
be the particle phase-space and B(Q) a Borel field of measurable subsets
Arof 0.

If X(7) is a closed measurable subset of X bounded by a measurable
surface T, we can define a partially ordered set I' of all surfaces T by
stating that T, 2 7, if X(7,) 2 X(T,). We call x(7) a point on T, and w(T) =
(v,x(7)) is the phase of a particle on 7. Then Q(7) = V X X(1), Z(1) =
V X 7, and I'(T) is a measurable subset of Z(T).

We can now define a first-passage process, according to Movyal,' as
a family of first-passage functions P, which are conditional probability dis-
tributions on B[Z(T)] X Q(T) satisfying the conditions

I. For each fixed phase w(T,) € Q(7), P[- |w(To)] is an incomplete
»
probability distribution on B[%(T)].

II. For each fixed set T(1) € B[Z(7)], P[T(7)|-]is a measurable
function on Q(T).

III. For each triple T 2 1, 2 15, P satisfies the generalized Chapman-
Kolmogorov relation,

P[r(7)|w(m)] = fz( )P[F(T)lw(Tl)]P[dw(T1)|u’(To)]~ (1)
T1

This means that if I(1) = A X S(7), where A € B(V) and S(7) € B(r),
then P[I(7)|w(To)] is the probability that, given a particle with initial position
x(To) inside T, in the state v,, the particle eventually makes a first passage
through some point x(T) € S(7) in some state v € A. So we can see that
ult|w(Te)] = PIZ(1)|w(To)] is the total first-passage probability for the

*By “"state," we understand the set of values of the particle momentum, energy, spin, etc.

15
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(1,), and that T[T |w(to)] = 1 - [T |w(o)] is

particle, given the initial phase w
h T, given the initial phase w(To), and

the probability of no passage throug
represents the stopping probability.

n more the kind of process for which we can
y introducing a discontinuous first-passage
function satisfies the conditions

We shall generalize eve

define the stopping probability b
processm’ll as the one whose first-passage

stated above and the integral equation

P[r(1) |w(e)] = PolT(T)]w(To)] + fn( )P[F(T)lw]Q[dw, 7| w(To)]. (2)

T

In an abbreviated notation, P = Py + P*Q, for each pair T 2 Ty, where Py

and Q satisfy the conditions:
I'. P, is a first passage function.

II'. For each T €T, Q is a conditional probability distribution on
Bla(T)] x a(T).

III'. (a) For each triple T2 7; 2 To, Pp and Q satisfy the joint con-
sistency relation

Q[r(r), Tl“’("’o)] = Q[A(Ty), Ty |W(To)] ar '[Z("r ) ola(T), le(Tl)]po[d‘”(Tl)lw('l'o)],
’ (3)

where A(T;) = A(T) N Q(Ty).

(b) For each pair T2 Ty, nolT lu)(’ro)] + B[le('l'o)] <1,
Sl e

Tl}:? situation now is that we have split the process in two: a process in
which tht? statfe of the particles is changed in a continuous form, and a
EEZEZES‘? W}‘.l::}ih the state is changed by jumps. Then, P, is a first passage
ity with no jumps and Q is the probabilit i j
. y of a first jump and con-
js;sqtuzng srttat.e b(?fore a f1rst‘passage through 7. Of course weJ cofld consider
. stat: ofal:;lkmd ;).f iump in Q and include in P, any other way of changing
e particle. Following this inter i i
LA : pretation, uolT|w(To)] is th
g?iall?:c;l])a‘.bxhty of a first passage through T with no prior j|um;)s] and :
throughoT 1sTt}1;1e tot[al probability of a first jump before a first passage
of no jumi)s anilnnzof;x!wETO)] = 1 = nol7|w(7o)] - 6[7|w(o)] is the probability
< ) :
R e passage through T; and u and 1) are now defined



From Eq. 2 and the factthat | = 1 - %, Mg = 1 - #5 - 6, 1*Q = 6 and
1-M=1-M-6+(1-7M)*Q =1-1M - 1*Q, we can see that the stopping
probability 1 is given by the integral equation

N w(me)] = Mol7]w(To)] + fﬂ( )Tl(1 |w)Qldw, T|w(T)], (4)

or
(I8 =) (5)

Furthermore, since P satisfies the Chapman-Kolmogorov equation, we have

K["lw("'o)] = j( ) /'[T|W(Tl)]P[dw(Tl)|W(To)]» T2T 2T (6)
(T,

Hence, substituting 1 - 7 for « into Eq. 6 yields the consistency relation

N lo(to)] = My |w(o)] + ,”Z( )ﬂ[T|w(Tl)]P[dw(n)lw(To)], Tz =g (7)

To discuss the existence and uniqueness of solutions of Eq. 5 satisfy-
ing condition 7, we introduce:

Qn+; = Qn*Q, Qo = 1, Pn4y = P*Qnr

nn = ﬂo*Qn, en = G*Qn_l, 6,,0 = lirn 61’!’

n—ew
and notice that, with the interpretations given before, ’ﬂn['rlw(To)] is the
probability of no first passage through T after exactly n jumps inside T,
and em[‘flw('\'o)] is the probability of an infinite number of jumps before

such a first passage.

Now we can state the following:

Theorem. = ? N, is the smallest nonnegative solution of Eq. 5 that

satisfies Eq. 7; 1t is the unique bounded solution of Eq. 5 if and only if 8

This theorem has been proved in Ref. 10 for the first-passage probability P.
Since TR is given by the same equation as P (Eq. 5) with the same Q, it

only remains to prove that it satisfies the consistency condition Eq. 7. First

we can write a relation analogous to Eq. 3 for Q. in the form

B7



+ 2 oy S TGS T
T2 T2 Tos = e (8)

On the other hand, T, satisfies
ﬂo[le(To)] = no["'llw("ro)]

o5 f T]o["'|w(71)]Po[dw(T1)lw(To)]’ T2 T 2 T (9)
Z(

)
Substituting Eqs. 8 and 9 into the equation MTn = Mo*Qp and making use of

Po*Qx = Py, we obtain

ﬂn[le(To)] = nn["’llw("’o)] + JZO fE('r ) T]j["’|W(Tx)]pn_j[dw('r1)‘W(To)],

1
T2 T 2 T (10)

Finally,

Ml 7 w(To)]

0

Mgl |w(m)] =

T M

Mls

1P, fastny latrol}

n=o0 Ty)

nn[""ll (mo)] 3
{ (T +JZO fz(

= T]R[Tllu)('ro)] + ‘/Z(-r \ T]R[‘r|u)('rl)]P[du)(Tl)|u,(To)], (11)

;I;lhetmost general solution of Eq. 5, as we shall see, consists of the sum of
(le- er_ms ER and 6. If we put un = uo*Qpn, then B0 = B*Q =
#0-To) *Qn = 6 - up - My, and, by iteration,

n
bntr1 = 1 - ) (nj+ﬂj),
j=0



Since the limit for n > @ exists,!! it follows that
el
6,, — I Jzo (M.J+T1J) = KR - T]R,

where we put

So we see that 1 = 1 - ug = Mg + 6,. This means that if 6, = (stable
process), the stopping probability is given by uR, while if 6 ;! 0 (unstable
process), the stopping probability receives a contribution 6, involving an
infinite number of collisions.

C. Pure Jump Process with Finite Collision Rate

In this section, we shall restrict the process to a pure jump process
and assume a finite collision rate. We shall see how the general formulation
of Section B above reduces to a well-known backward integro-differential
equation.

Let us split the state variable y in the form v = (u,Y), where u is
the unit vector in the direction of motion of the particle and vy includes the
remaining state variables. Then, the position vector of a particle that is
initially at x and undergoesno collisions in traveling a length of path s
becomes x + us.

Now we assume that the probability that a particle at x and in state
(w, Y) suffers a collision while traveling a distance 6s is A(u, v, x)86s + O(8s),

and the probability of more than one collision is O(8s).

Let (p(A lp.o, Yo, Xo) be the transition probability from the state
(wo» Yo) to some state (u,y) € A, given that a collision occurred at xo.

If for any given surface T, Rilig =0 1)8 =Dt (s |x0+ wos € T), then for
a pure jump process, we have

R(Ko, %0, T)
'ﬂo(’T‘Ho: Yo, Xg) = €xp 'f A(wos Yo, Xo +pos) ds
0

8[| %0+ poR (Ko, X0, T)] (12)

1)
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and

R(po,%0,T)
Q(AX S, T |ko» Yor Xo) :f o(A|por Yo, Xo + HoS) 8(S |30 + Hos)
0

s 155
expl:'f Mio. Yoo X0+ KoE) dEil Mo, Yo X0+ bos) ds: Wil
0

where A € B(V), S € 1, X0 = x(To), To T, and

1if t €C,
8(C|t) :{
0ift ¢C.

Substituting Eqs. 12 and 13 into Eq. 5, we obtain

R(ko,%o, T)
Tl(’fluo: Yo» Xo) = exp['f ] Ao, Yo» X0+ Wos) ds o[t \Xo+ woR(pos %o, )]
0

R(o, %0, T)
& / f Ay, > %o + Hos) CP(dUtd’Ylu-o’ Yo, Xo + HoS)
Vo

s
eXP['/ Mpos Yoo %o+ HoE) d§:| Mo, Yor %o +pos) ds. (14)
0

Using the fact that R(pg, Xo+ oS, T) = R(wo, X0, T) - Kos and denoting the
spatial derivative of T in the direction of Yo by Ko * (b/bxo)'n, we finally
obtain from Eq. 14 the "backward'" integro-differential equation

o}
Bo = (7 ko> Yor X0) = Ao, Yor %0)N(T |o: Yos o)

- Mo, Yor %o) fV (T |1, ¥, xo0)p(dudy | wo: ~o» =0)- (15)

This equation is valid for any kind of range, and we can obtain the equation
for any range by appropriately defining the surfaces T. For example, to
obtain the projected range for a certain direction, we take planes perpen-
dicular to that direction. If, on the other hand, we want the lateral range
with respect to a given direction, then we have to take cylinders whose

common axis is the given direction.



We now turn to the equation for the distribution of the effective range
and concentrate on the space homogeneous process, where \ and ¢ are
independent of x,. If, furthermore, A is independent of u and ¢ depends
only on u; * po = cos B (where 6 is the angle between the initial and final
directions W, and p;), then the equation for 1) simplifies considerably.

If we take the surfaces T to be planes normal to the path of the particle
and introduce the path length s, the term pg - b/bxo of Eq. 15 becomes
-d/ds and

9'(av|vo) = [ oldyduvo, o)

is independent of p,. The backward equation now becomes

% s |vo) = ~M(vo) [ [1(s | vo) - (s [)] @'(dv|vo). (16)

D. Effective Range Distribution in Simple Cases

Although the quantity of greater interest from the point of view of
applications is the projected range Rp,lZ the effective range is a good
approximation in the case of penetration of heavy fast ions when the effect
of multiple scattering is reduced.

Furthermore, the equation for the distribution of the effective range
is simple enough to be solved exactly for some special forms of the scat-
tering function.

Let us take the energy E as the unique 'state variable for the pene-
trating particle and assume that the scattering function cp(dE| E,) has the
form

9(dE|Ey) = ) 4E. (17)

Then we shall seek the solution of
d Eo a(E)
= Me(t|Eo) = -M(Eo)Ne(t|Eo) + A(E,) Me(t [E) dE (18)
ot
€

for arbitrary A(E,).

Using the Laplace transform

ﬁe(alEo) =_/; e ot il izl et SR,

21
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and the "initial" condition ﬂe(olEo) - 0, we transform Eq. 18 into

> Eo A
b(E,)[1+ a/AMEo)] Mela|Eo) = f Ne(a|E)a(E) dE.

€

Differentiating with respect to E,, we obtain

D%& = a(Eo)p/{[1 + o/\(Eo)] b(Eo)},

where
@ = [1+ o/ MEo)] b(Eo)ﬁe(O’lEo)~

After integration, and using the condition 'ﬂe(al gl l/a, we obtain

Ey
Tola|Eo) = af((égg[lffﬁ((e%]o)] exp</e dE a(E)/{b(Eo)[1+a/x(E)]}>. (19)

Now, since @ must be normalized in such a way that

b(Eo):_/; a(E) dE,

and therefore a(E) = db/dE.

Hence the equation for N becomes

. b Eo
#Me(o| o) = b<é§>ﬁii i(f:o])] exp(fe db(E)/{b(E)[Ha/ME)]}). (20)

o Ex;za_r}dilgg the exponential in the right-hand side of Eq. 20 and putting
i 1:ll“:.:o) = .{Ofﬂe} for the inverse of &Te (this means that 8 is the probability
ensity function of the probability distribution T(t|E,)), we have
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6(t| Eo)

b(e)[1 +a/A(e)] - 1
s {b(Eo)[l+a A(Eo)] [“Zz k"];
[ ) v+ o/a(e)] SRR Eo k db(EjA(Ej) K exp[-A(E;)]
: [L l{b(Eo)[l+a;}\(Eo)]}j| "(‘)*E k—_/; fe I =) Zl_—

and finally,

k
IT ME; )d[£n b(E;)]

Eo j=1 1 - exp{-t[A(E}) - AM(Eo)]} (21
. [T [MER) - A (E1)]
1#1

The moments of the distribution can be obtained directly from Eq. 20 in
the form

dei s
(RE(E,)) = (-)k[ﬁ ane(alEo)]

a=0

The first two are

Eo 4l4n b(E)] 1 1
<Re(EO)> = j; AME) e (MEO) 2 Te))

and

Eo
(RL(E,)) = (Re(Eo))Z+Zf d[ii(;(f)]wi: ( 1 rf:)

€

(; : _1__>2

AMEo) Ale)/ -

Solutions can be immediately obtained directly from Eq. 20 in some simple
cases. The results are presented in a schematic way in Table I.
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TABLE 1. Stopping Probability in Very Simple Cases

A ® € Mt | Eo)
-t/
1/E dE/E, 0 1= (1t t/m,)ie /Eo
t/Eo 72 _
2E dE I T
l/E —_Eg 0 '/(; 3 e Gy
t/Eq
1/EY dE/E 0 ek of t/Ve~Tdr (gamma distribution)
° i)
2 0
v

E. Possible Generalizations

The theory developed here is valid for an amorphous substance. In
a medium like a crystalline solid, we must take into account collective
effects, and the collisions with the atoms of the material will no longer be
mutually independent. This causes the process to lose its Markovian

character.

However, we could consider as an approximation that the crystal is
an amorphous substance in which "strings" and "planes" of atoms are
imbedded in a random way. Due to the general definition of a discontinuous
first-passage process and to the elasticity of the concept of "jump" in the
state of the particle, we can consider that the continuous part T, of the
stopping probability represents now the solution for the material considered
to be amorphous, while the "jump" part of Eq. 5 represents the contribution
of the scattering by a "string" and a "plane" of atoms.

The difficulty is to define scattering functions for such events.
There are already some studies of scattering by collective systems of
atoms; a fairly general account appears in Ref. 13.

IIl. THE IONIZATION CASCADE

A. Introduction and Summary

A fast charged Primary particle passing through an absorber ejects
knock-on electrons, each of which, if energetic enough, will ionize further
a‘toms. The theory of such an ionization cascade was developed in a pre-
v101,415 paper!® (referred to henceforth as I). In the present report, we
review and extend the relevant parts of I, leading to a numerical computation
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of the distribution of numbers of ion-pairs produced by a primary of given
energy passing through a homogeneous absorber. We will show that this
distribution can be expressed to a good approximation in terms of auniversal
law, namely, the approximate analytic form for the Landau universal dis-
tribution for energy loss by ionization first given in Ref. 15 (referred to
henceforth as II).

One striking feature of ionization by fast charged particles is the
linear dependence of primary energy loss on the number of ion-pairs
produced, the most probable energy loss per ion-pair being independent
of the primary energy, and varying little with the nature of the absorber
(of the order of 35 eV per ion-pair). In this report, we obtain an expression
for the mean number N(W) of ion-pairs conditional on a loss of energy W by
the primary. It is found that N(W) is independent of the initial primary
energy. Furthermore, if Ep is the most probable primary energy loss,
then a numerical computation shows that N(Ep) varies linearly with Ep,
while (dN/dEp)'l yields a value for the energy loss per ion-pair in fairly
good agreement with the experimental results. (Qualitative explanations
of this phenomenon have been advanced in Refs. 16-18.)

B. Theory of the Ionization Cascade

In this section, we review and extend the relevant parts of I. Let
pn(u|E;t) du be the probability that a primary of initial energy E produces
exactly n cascade electrons while losing energy between u and u + du in
time t. The cascade process may then be characterized by the generating
function

»
©

E
¥z, A|Et) = ) znf e MUp (U|E;t) dU. (22)

n=o 0

Setting z = 0 in Y yields the Laplace transform of the primary energy-
loss distribution p(u|E;t),

E
(A |Est) = f e-)‘Up(UlE;t) dU = ¥(0,\|E;t). (23)
0
Setting A = 0, we obtain the probability generating function (briefly, p.g.f.)
for the cascade number distribution
©

Gp(z|E:t) = Z_o 2P (E;t) = ¥(z,0|E:t), (24)
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where

E

Py(E:t) f py(U|Eit) AU

is the probability of a total of exactly n electrons in the cascade.

For a fast primary, the knock-on electrons are emitted overwhelm-
ingly with energies that are small compared to the primary energy E, and
the secondary cascades each such knock-on initiates are small and terminate
near the path of the primary. Hence, to a good approximation, we may allow
that all such secondary cascades have terminated in the calculation of Y.

Let qp(U) be the probability of exactly n electrons in such a terminated
cascade initiated by a knock-on of energy U, and let

g(z|U) = ) 2%q,(U)

be the corresponding p.g.f. Let Hp(UlE) be the differential collision rate
(per unit time) for primary ene rgy loss, and let us assume that the primary
ionizes only when it loses energy U 21, where I is a mean ionization
potential for the absorber atoms, thereby initiating a secondary cascade

with initial knock-on energy U - I. Then Y satisfies the "backward" integro-
differential equation

> E
o ¥(E:t) = f M(E-Ut) g(U-1) - ¥(E;t)} np(UIE) du, (25)
0

where we have suppressed indication of the dependence of ¥ and g on
z and A and conventionally set g(U-1I) = 1 for U < 1.

If E is very large compared to the most probable energy loss, we

can, to a good approximation, substitute ¥(E)e AU for ¥(E - U) in Eq. 25. We
obtain

> E
ot Y(Eit) = ‘Y(E;t)f [e"Ug(U-I)-1]HP(U|E) du, (26)
0

whose solution [with initial condition ¥(E;0) = 1] is conveniently written in

the form



E
¥(z, A | E;t) = exp{zp(E)t/ [e')‘Ug(le-I)-l]cpp(U|E) dU}, (27)

0

E
where otp(E) = f HP(U|E) dU and g, = Hp/o(p. Then (see II and I),
0

p(A|Est) = exp[ap(E)t fE (e”MU-1) gp(U|E) dU] (28)
and

Gp(z|Eit) = exp [ap(}:)t nZ: (z2-1) Qn(E)], (29)
where

E
Qn(E) =f1 an(U - 1) ¢,(U|E) av.

To evaluate g(zIE), we assume again that a cascade electron
ionizes only when it loses energy U 2 I (the mean ionization potential),
thereby ejecting a further cascade electron of energy U - I. LetII(U |E)
be the differential collision rate for energy loss of an electron of energy E,
and let x(WlE;t) be the final energy probability density with no ionizing
collisions for an electron of initial energy E in time t. Then x satisfies
the "backward" equation

it
[o—bﬁ or(E)] x(W|E;t) = / x(W|E - U;t) I(U |E) dU, (30)

E
where o(E) = f I(U|E) dU, while the p.g.f. G(z|E;t) for the number of
)

electrons in a secondary cascade initiated by a knock-on of energy E in
time t satisfies the integral equation (cf. I)

t E w
G(z|E;t) = zx(E) +/ dsf dW/ dU G(z|W-U;t-s) G(z|U-Lt-s)
8 I I

x(W | E;s)1(U | W), (31)

27
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where

E
%¢(E) =f0 X(W|E;t) dw.

Only nonionizing collisions contribute to the change with time of x.
In any time interval t of interest, we can expect that the number of such
collisions will be very large, while the energy loss in each collision will
be very small as long as E >> I; hence a "diffusion approximation" to
Eq. 30 is legitimate. Expanding the integrand on the right-hand side of
Eq. 30 in a Taylor series and neglecting terms of third order, we obtain
the diffusion equation

[c%"L o(E)+a(E) O—b--%b(E) b%zz] x(W|E;t) = 0, (32)
where
E I 1
o(E) = I(U|E) dU; a(E) = UI(U |E) dU; b = -
fl fo (UlE) (E) fo U*(U|E) du.

A "zero-order" approximation is to neglect loss of energy by nonionizing
collisions; i.e., take

x(W|E;t) = 8(W-E) e ou(E) (33)

If we set b = 0 in Eq. 32, we obtain the "deterministic" solution

E
x(W|E;t) = 8[W-g2(E;t)] exp[— /( ; a_l(U)ozi(U) de‘, (34)
e(E;t

where the final energy £(E;t) is defined implicitly by

E
t = L(E;t) a~Y(vu) du.

An approximate Gaussian solution to Eq. 32, namely
i 2 -1/2
x(WIE;t) = [2n0?(E;t)] exp {-[E- W - m(E;t)]?/20%(E;t) - A(E;t)}, (35)
where
t

ME;t) = f %le(E;s)] ds,

0
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it
m(E;t) :f al£(E;s)] ds,

0

and

t
o?(E;t) :f ble(E;s)] ds,

is obtained via the "forward" equation

el

[3 + o5 (W) - ~ a(w)-1 b(W)] x(W|E;t) = 0 (36)

2
ot 2 W2
adjoint to Eq. 32 by substituting £(E;t) for W in the expressions for (o 4}
a, and b; note that the right-hand side of Eq. 35 converges to that of Eq. 34
when o% - 0.
A good approximation to the p.g.f g(z IE) of the terminated secondary

cascade is now obtained by setting g(z|E) = G(z|E;T), where T is the time
required for the "deterministic" final energy £€(E;t) to vanish; i.e.,

E
T f a~Y(u) au.
0
Substituting in Eq. 31, we obtain an integral equation for g,
E w .,
g(z|E) = zxp(E) +f1 dwf dU g(z|W-U) g(z|U-1) K(U, W, E), (37)
I
where

K(U, W,E) = I(U| W) fT x(W|E;t) dt.

C. Computation of the Cascade Number Distributions

We begin by computing the secondary-cascade number distribution.
Clearly, g(z|E) = z when 0 < E < I. It follows by induction (cf. I) that in
the energy range (k-1)I < E < kI,

k
g(z|E) = ) zlqy(E)

1

(i.e., qj(E) = 0 for j > k), and that the integrand on the right-hand side of
Eq. 37 involves only products g(z|W) for values of W < (k- 1) I: This yields




an iterative scheme for the computation of g(z |E), and hence of the qk(E)’
in successive energy intervals of length I. Furthermore, in the interval

(k-1)I< E <KkI, we have

k
Z qj(E) =1

and hence need only compute q;, ..., 9k-1- Substituting the polynomial
expansion of g(z ‘E) into Eq. 37, we find that

q(E) = xp(E) for all E=1 (38)
and obtain the iterative relation

E W k!
qx(E) = f de av y, q;(W - U) qk-j-1(U=-1) K(U, W, E)
I it j=1

for E= kI, k = 2,3, ... . (39)

The electrons in the secondary cascade are predominantly of low
energy, and the energy loss at each collision is predominantly in the
neighborhood of the ionization potential. No simple expression for the
differential cross section c(UlE) for energy loss U is available in this
region, but it is known (see Eq. 27) that it exhibits a single maximum at
U = I and approaches rapidly to the Rutherford cross section OR for

increasing U; hence we use a phenomenological "resonance'" expression
foric (cfi II)

dU

B
o(U|E)dU = = ———,
| BAULF s °

(40)

which tends to the Rutherford cross section oRr dU = BdU/EU2 with
increasing U. (B = nZzze", where Z is the atomic number of the absorber
atoms, e is the charge of the electron, and ze is the charge of the impinging
particle.) The half-width I of the resonance curve is evaluated by compar-

ing with experimental values the calculated value of the primary ionization
rate, which is proportional to

fIEo‘dU,

and hence is approximately T'"!. The @ifferential collision rate is then

V= ch, where N is the number density of scattering centers and v is
the primary velocity.
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Substituting this expression for II in the expressions obtained in
Section B above, we can compute the functions K(U, W, E) and xp(E) = q,(E),
and consequently compute the probabilities qk(E) for k 2 2 by the iteration
relation (Eq. 39).

To evaluate the primary cascade p.g.f. G _(z |E;t) given by Eq. 29,
e p
we need the probabilities

E
O (E) = f qu(U-1) cpp(UlE) Sl R A s (41)
I

and hence the primary energy-loss distribution at each collision ¢_. For
a fast primary, where E >> I, we can, to a good approximation, use the
Rutherford cross section o and replace the upper limit of integration E
by ®; thus we can take cpp(u) du = I du/u2 (cf. II). Substituting in Eq. 41
and changing variables to e = U/I, we find that the Q; becomes

3 d
Q = f qlie-DIZ: k=12, ..,
i €

which is independent of E.

Turning to Eq. 29 for the primary cascade p.g.f. G (zlE;t), we see
that in the present approximation, G, and hence the number probabilities P
depend on E and t only through the product ozp(E)t = 7(E, t), which is the
mean number of collisions experienced by the }erimary particle in time t,
or passing through an absorber of thickness x = vt, where v is the velocity
of the primary. Changing variable to T, and further setting z = e *, we
obtain the Laplace transform of the primary-cascade number distribution

M(B, T) = G(e'BIE;a—pT(E)> = ¥ e™Bp (1) = TR(B), (42)

n=0

where

- St
k=1

Let N(7) stand for the total number of electrons in the primary
cascade after an average of T primary collisions; i.e., N(T) is the
random variable with distribution Py (1) = Probability[N(T) = n]. For
T> 50, the most probable value Np('r) of N is large, and the distribution
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of N is sharply peaked on Np. For these reasons, we can approximate .
P,(1) by a continuous distribution P(v, T) obtained by the first saddle point
method applied to the formal inversion of M(B, ) (cf. II)

1 ctie o s
Plv.1) = g [ explrR(:)+av] de = a7 Hen TR (5y)
’ 2mi :
c-i®
exp{t[R(B,) - B,R'(B,)]}. (43)
where By, is determined implicitly by the relation v = -TR'(B\)), while

Es
a = -(2n)7V2 fe JRT(B) exp{r[R(p) - BR'(B)]} dB + £ Po(T)

is a normalization constant.

A program was written to implement the computations described
above on the CDC 3600. The results are shown in Figs. 2-5. Figure 2
shows the probabilities q;(E), ..., q4(E) as functions of E, computed for an
ionization potential I = 14.9 eV and half-width (of the resonance curve)
' = 6.26 eV. The probabilities Q) shown in Fig. 3, converge rapidly to the
sequence c/(k2+ 1), where ¢ = 0.56 is a normalization constant. Further-
more, computations showed that the probabilities qk(E), if plotted as
functions of E/I, and hence the distributions Q;, are not at all sensitive
to the value chosen for I in the relevant range of 10-50 eV, while I varies
little between absorbers. Hence the distributions shown in Figs. 2 and 3
may be considered as universal, i.e., independent of the absorber, thus
confirming the results in II. (The values obtained here are somewhat dif-
ferent from those given in II, mainly owing to the fact that loss of energy
by nonionizing collisions has been taken into account.)

ql(E)

Fig. 2. Probabilities q(E). ANL Neg. No. 145-1264,
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It follows from the universality of Qn's that the primary cascade
number distribution Pn(T) depends on I and T only through‘ T, The results
of the computation of the approximate distributi9n P(v, 7) given by Eq. 43
are shown in Fig. 4 in terms of the reduced variable v/T for T = 50, 100,
and 200. An approximate expression

R(B) = -0.4138 + 0.611 (log B - 0.328) (44)

is obtained as in II but using the distribution {Qx} above. Introducing in
Eq. 43 the reduced variable
V- Vp V- Vp

W = —— =

cT 0%567 7"
where

vp = m[0.413+0.567 (log 1.124 T-0.672)] (45)

is the most probable value of v, one obtains (again as in II) the distribution
P(v, T) in terms of the "universal" Landau distribution XL(w); i.er

V5 P dw =22 =
= = Wy,
= dv, where XI (w) (2m) e (wte )

P(v, 7) dv = xq,

Figure 5 compares the Landau distribution yp (w) with the distributions
P(v, 7) of Fig. 4, expressed in terms of the reduced variable w defined
above. A much better agreement, shown in Fig. 6, is obtained if we change
variables to w = [v-v.(7)]/0.567 1 in P(v, 7), where v,(T) is the most
probable value of v determined by P(v, T) instead of the approximate value
(Eq. 45). This shows, as might be expected, that the approximation (Eq. 44)
to R is good for the shape of the curve P(v, T), but rather poor for its
location (i.e., for vp).

Fig. 6
Comparison of the Distribution P(V,T)
to the Landau Distribution with the
Most Probable Value of v Given by
the Distribution P(v,t). ANL Neg.
No. 145-12617.

P, T)
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D. Relation between Primary Energy Loss and Number of lon-Pairs in
Primary Cascades

Let N(U, 7) be the number of ion-pairs produced by a primary
suffering an average of T ionizing collisions conditional on a primary
energy loss (by ionization) U, let p,(U, T) be the distribution of this random
variable with

@

¥zluir) = 5 =py(U, 1)

n=0

the corresponding p.g.f., and let p(U|E;’r) be the probability density for the
primary energy loss (where E is as before the initial primary energy).
Then

E

¥(z, A |E;T) =f W(z|U;m)e MUp(u|E; 1) AU
0

E
exp{]’ / [e-MUg(z|U-1)-1] q>p(U|E) dU},

where Y is the generating function defined in Eq. 22 and satisfying Eq. 27,
and we have changed variables from t to 7 = ozp(E)t. Let

o

A(U) = ) nqn(U) - [-g—z g(ZlU)] a5

1

be the average number of electrons in a "terminated" secondary cascade,
and let

©

N(Uir) = 3 mpa(Uin) = [ yelvi)]

1

z=1

be the expected value of N(U;T), i.e., mean number of ion-pairs in the
primary cascade conditional on a primary energy loss U. Using Eq. 23
for the Laplace transform p of p, we find that
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[i v(z,xlz;f)L:l = fE [% w(le;w)] r]e-wp(ul}:;w) au

vz o

E
= N(U;t)e MUp(U|E;T) AU

E
E . .
- {7/ [b% g(ZIU_I)L:le"‘U%(ME) dU}exp[T/ (MU' - 1) 9p(U' |E) dU}
0

0
E ~
= [7[ S(U=1) e"‘Urpp(UlE)dU} o |EsT):
0

i.e., the Laplace transform of N(U; T)p(U lE;T) is equal to the product of the
Laplace transforms of p and of n(u-1I) :pp(U |E). Hence,

w
N(W;T)p(W|E;T) = ’T‘f o(W-U|E;T) n(U-1) cpp(UlE) dUu
i

W-1
T / A(W-U-1) gp(W- U|E) p(U|E;T) dU. (46)

1

Note that m(U) = 0 when U < I. Hence, we take the lower limit of integration
to be I instead of 0 in the first expression above, and the upper limit to be
W -1 in the second expression.

Changing variables to w = (W-Ep)/TEo, 1 = (U - Ep)/7E,, where
E; is the minimum transferable energy in a primary collision and Ep is
the most probable total primary energy loss, transforms p(WIE;T) dw
into the "universal" Landau distribution yp (w) dw (see II), while cpp(U) dit=
E, dU/U2 becomes T dﬂ/(‘n+ ﬂp)z, where 'I]p = EP/TEO. Hence, writing
N = 1/TEo, we obtain

N(w) = N[TEo(w+1y,)i7] = xLl(w)f xL(w = 1) BLTEN(N+ 1, - 1p)] __ o4
Tty (n+1,)*

£ gl
-l [ A1) L. (47)

Hence the expression relating the mean number of ion-pairs N to the most

pzjobabl'e enerhgy loss Ep (see the last paragraph in Section A above and
Fig. 7) is [using the fact that x1,(0) = (2me)=2]
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For T 2 50, we can take
E
P
= —_— = 2 -
ﬂp = lopiZat=tc,
where ¢ = 0.577 is the Euler constant,

as a sufficient approximation to the
most probable energy loss (see II).
The secondary-cascade mean number
1n(U) was computed using the probabil-
ities q)(U) shown in Fig. 2. Clearly,
n(U) = 1 for U <I; for U > I, T varies
very nearly linearly with U and can be
approximated by (see Fig. 8)

a(u) = f kqy(U) = 1 + 0.28(%- 1).
: (49)

21 31 a1

Uy——-=

Fig. 8. Computed Ti(U) and Approximation to T(U) Given
by Eq. 49. ANL Neg. No. 145-1271 Rev. 1.

The function ﬁ(Ep;T) was computed, using Eq. 49 for several
absorbers, taking I to be the mean and E; the minimum ionizing potentials.
The dependence of N on E_ is in all cases very nearly linear, as shown in
This result appears to depend essentially on the cascade mechanism

S,
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and the E~2 dependence of the differential cross sec:tion for large energy
it is remarkably insensitive to assumptions about the cross
This was shown by recomputing the dis-
loss by nonionizing collisions, i.e.,

transfers:
section for low energy transfers.
tributions qk(U) assuming no energy : :
adopting Eq. 33 for x; this led once again to a linear expression

() = 0715(%- 1) (50)

for the secondary cascade mean number, and to a linear dependence of N
on E.. for the same substances: the only change was in the slope of the
line. If we let Vo = (dN/dE )~! stand for the probable energy loss per ion
pair in the first case (7 given by Eq. 49), and Vg for the same quantity in
the second case (@ given by Eq. 50), then it is clear from the theory that

Vo > V%, and it was found that V, and V§ lie between 18 and 47 eV, for all
the substances examined, which is of the right order of magnitude. These
results and the comparison with the experimental values, where available
(from Ref. 20), are displayed in Table II. In all cases, the experimental
values lie between V, and V§; for the hydrogen, where the very rough
assumptions we have made regarding the cross sections may be expected
to hold best, one does in fact find an experimental value of 36.3 eV per ion
pair very close to the calculated Vo = 37.4 eV per ion pair. The agreement
deteriorates for the noble gases with increasing atomic number; for helium,
it is still near to the calculated V,, while for argon, it lies nearer to Vi
This presumably indicates that for the noble gases, the true differential
cross section decreases much more steeply with energy below its maxi-
mum than it does for the phenomenological expression (Eq. 40). We may
reasonably conclude that while the present theory accounts satisfactorily
for the main features of the ionization cascade, agreement with experiment
for the calculated mean energy loss per ion pair would be improved by
introducing more accurate values of the differential cross sections for
low-energy transfers.

TABLE II. Calculated Values of Mean Energy Spent
by the Primary in Creating One Ion Pair

V, (with nonionizing Vb (without nonionizing V, (exper),
Substance I, eV E,, eV energy losses), eV energy losses), eV eV
H 1506 13.527 3.4 212 36.3
He 44.0 24.46 46.42 28.4 42.3
Fe 273.0 7.83 38.0 22 =
Al L5550 5.96 3580 18.5 =
Ne 95.6 21.47 49.8 28.8 36.6

Ar 305.0 15.68 B85 2139 26.4
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PART TWO
HIGH-ENERGY PHENOMENA

IV. MULTIPLE-PARTICLE PRODUCTION IN STRONG
INTERACTIONS AT VERY HIGH ENERGY

A. Introduction

The main axiomatic approaches to the description of strong inter-
actions, namely, the Regge poles, the quantum field, and quark theories,
meet with more and more difficulties in providing a quantitative account
of the experimental data on the multiple production of particles in high-
energy collisions, as the multiplicity of secondaries increases. As an
example, we refer to the effort of Caneschi and Pignotti.?! In contrast to
this situation, thermodynamic and hydrodynamic models have been reason-
ably successful in describing, in a quantitative way, several (though not all)
features of the phenomenon at higher and higher multiplicities. In this area,
we must distinguish the work of Heisenberg,22 Landau,? and his followers,?*
in the development of the hydrodynamic theory, and Koppe,25 Fermi,? and
Hagedorn?’~?? in the development of the thermodynamic theory.

In addition, there are some purely phenomenological models like the
CKP,3° the two-ﬁreba.ll,“’32 and the multifireball®® models, whichalso account
for some aspects of the process.

The two-temperature model, which has been quite successful in
describing experimental data on one-particle momentum distributions, has
been developed from the thermodynamical theory**5 with the incorporation
of some empirical characteristics. We shall analyze some new interesting
features of this model and study some of its predictions in the light of other
models.

In addition, we shall present the inelasticity distribution obtained by
the Monte Carlo method for the two-temperature, the two-fireball, and the
CKP models. Finally, we shall see how the multiplicity distribution can be
obtained from the inelasticity distribution and discuss the difficulties
involved in this step.

B. The Thermodynamical Model of Hagedorn

Hagedorn”'” has developed a statistical thermodynamics model,
which includes barionic number conservation, and applies to the situation
created when two strongly interacting particles (hadrons) collide at very
high energy.
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In such a situation, we have a very big number of particles confined
in a small volume (fireball) for a time long enough for the stronginteractions
to establish an equilibrium between all their possible states and resonances.
However, we only distinguish one "particle" from another by its degree of
excitation. This led Hagedorn to define a fireball as:

"a statistical equilibrium of an undetermined number of all kinds
of fireballs, each of which, in turn is considered to be a statistical
equilibrium of an undetermined number of all kinds of fireballs,
each of which, in turn is considered to be..‘[ad infinitu.tn]." (P)

This postulate generates a special kind of thermodynamics.

If p(m) dm is the density of states of mass of the secondary fireballs
and o(E) dE is the density of energy states of the principal fireball, the
partition function of the system can be expressed either as

= exp,;/‘°° o(m)F(m, T) dm]
0

with a known function F(m, T), or as
©
s f o(E)e E/T gE.
0

The postulate (P) implies that the functions p(m) and o(E) must have the
same behavior as m >« Hagedorn shows that we can require at most that

—E—LIO [p(m]*las 128 e (-

log [o(m)]
That is to say, the entropies become the same, and this conditions leads to

const m/To
BT e

p(m
mS/Z

as m—>ow, (51)

Veneziano?® pointed out that this behavior of the mass spectrum of hadrons
can.also be predicted starting from a completely different point of view
(which is a remarkable coincidence). If the partition function diverges for
all values of the temperature T > To, then this model predicts a maximum
ten“.ﬂperature Ty ~ 160 MeV for all stable hadronic matter. In other words
To 1.s t}.me boiling temperature for hadronic matter. So, no matter how high,
th'e 1‘r'1c1dent energy of a strongly interacting particle is, strong interactions
'\:v111. control" it so that when Ty is reached the principal fireball will

boil off" particles, which in turn can produce other particles, and so on



The occupation number can be calculated as from the partition
function

z, V 1/2 g
Sl ay s (ZkT)s{exp[lf(pz+mf<) / ]; 1} (52)
(-) for bosons

(+) for fermions,

where z) is the spin-isospin multiplicity of particle "k" and V is the
hadronic interaction volume.

As the thermodynamic equilibrium is reached in the reference frame
in which the principal fireball is at rest (RFB), kinematics is added to the
model by ascribing a collective velocity distribution to it in such a way that
the velocity is higher where the temperature is lower. Thus, more periph-
eral particles are produced with higher velocity.

In the Hagedorn theory, the collective velocity distribution is fitted
to obtain good agreement with experimental data by means of two velocity
distributions, one for "newly created" particles and one for "through-going"
particles.

C. The Two-temperature Model

Starting from the assumption that the transversal momentum pI and
the longitudinal momentum pz in the center-of-mass system (CMS) are
independent random variables (this is a quite nealistic assumption®”),
Wayland and Bowen?* proposed a model in which "two thermodynamical
equilibria" are established in the CMS with two characteristic temperatures
T and T,, and then obtained the distributions for pj‘_ and pz from the occu-
pation number (Eq. 52) by integration. At high incident energy, these dis-
tributions take the forms

PILF K, (u3/To)
W irare Kz(mcz/To)

Wo(p¥) dpf B

and

it e L exp(-u¥/T)(1 +u¥/T) ik,
R L7 mees Ky(mcz/T) t )

where

and

41
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T, is taken as a fitting parameter, and T depends upon the total center-of-
mass energy through a second parameter. The fitting of this model to one-
particle momentum distributions can be seen in Ref. 35. Efforts have been
made?® to reinterpret the two-temperature model as a one-temperature
model in the RFB, with temperature Ty, the second temperature T being

the result of the kinematics in passing from the RFB to the CMS. However,
this interpretation, as we shall see, contradicts other characteristics of the
model. Moreover, at present we cannot say whether the model can be inter-
preted in terms of fireballs and, if so, how many and with what distribution

of velocities.

The difficulty appears when we try to reconcile the fireball origin
of the model with the resulting angular distribution.

D. Angular Distribution in Log Tan (9*/2)

In cosmic-ray jets, the angular distribution of secondary particles
in the variable x = log tan (6*/2), where 6* is the angle of a particle with
respect to the forward-backward direction, has frequently two peaks (this
feature gave origin to the two-fireballs model).

We shall obtain and analyze the log tan (6*/2) distribution one obtains
from the two-temperature model.

In general, if x; and x, are two independent random variables with

probability distributions f)(x;) and f,(x,), then the new random variable
¥y = ¢(x), x;) has the probability distribution

) = [ a6t/ (54)
s

?vhere the integrand must be expressed in terms of x; before the integration
is performed. If the criterion given by Eq. 54 is applied to the transformation

y1 = tan6* = p¥/p¥
and further the following changes of variable are made:

2y,

V2 = tan (6%/2), given in implicit form by y, =
1-y%

and

1
x = logy, = T3 In y,,



then, using the distributions given in Eq. 53, we obtain the angular-
distribution function in the form

28 1 coshi2 88
m‘*c5T0K2(mcz/To)Kz(mc2/T) sinh®[2.3 x|

= p*z 12 p*z 1/2
1
A f pzz<—z’ﬁ_ +m2> K; —<—L—- +m2>
0 sinh” 2.3 x To\sinh? 2.3 x

X exp(-p¥/T)(1+u¥/T) dp} . (55)

F(x) =

This function is represented in Fig. 9 as T, increases and in Fig. 10
as T decreases toward T,. It can be observed that the two-peaked feature
is strongly related to the model and is controlled by these two variables.
The case of decreasing T corresponds to decreasing length of the longitu-
dinal half-axis of the ellipsoid of constant momentum in the CMS, and hence
this actually becomes the RFB (where we have a sphere of constant momen-
tum). This can be more easily visualized by considering Fig. 11. The case
of increasing T,, even if it does not really occur, because T, has an upper
limit (say 0.16 GeV), represents an increasing transversal half-axis of the

09
08

o 0.6

0.2]
02

[ 040 080 120 160 200 240 280
o e
Fig. 9. Angular Distribution Function F(x), for Fig. 10. Angular Distribution Function F(x), for
x > 0 for Different Values of T( at x > 0 for Different Values of Ej
Ep = 3000 GeV and m = 0.141 Gev/c2, (primary energy) at T02 = 0,14 GeV
ANL Neg. No. 145-1207 Rev. 1. and m = 0.141 GeV/c“. ANL Neg.

No. 145-1208 Rev. 1.
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ellipsoid of constant momentum
in the CMS. This could lead
one to think that the longitudinal
temperature is a kinematic
effect which results when we go
from the RFB to the CcMsS.*®

90°

However, we can show
that if we consider a one-

82 £.r107GoV fireball model with a tempera-
ture T, in the RFB, we always

Fig. 11. Polar Representation of the Angular Distribution Gl one-peaked log tan
Function in Terms of the Angle 6% in the CMS, (9*/2) distribution in the ChIE

for Different Values of Eq (primary energy).

distributio
ANL Neg. No. 145-1209 Rev. 1. In fact, the angular di =

in the RFB is

aa
4’

where dQ is a differential solid angle whose axis forms an angle 6 with
the forward-backward direction. This means a distribution of the form

sin 6 d6.

Now, if Y is the Lorentz factor of the fireball in the CMS and
x = log tan (6%/2),

we have that

dx

Bida
) cosh? (x+ xp)

(56)

where x, = log vy This is a one-peaked distribution centered at xj,. Thus,
as mentioned earlier, we cannot relate the two-temperature model to a one-
fireball model in a simple manner.

E. High-energy Interaction Models and Their Relation to Fireballs

The two-fireball model was mainly introduced to explain the two-
peaked feature of the log tan (6*/2) distribution. Daiborg and Rozental®’
have pointed out that a number of models also give this feature with a
transversal momentum distribution of the form

* ol
W, (p%) dp¥ = const p% exp(—pt/po) dp*.
They affirm that the two peaks are a consequence of increasing the ratio

P.L/PL as Ej increases. This could be interpreted to mean that a two-
fireball model is unnecessary. However, the same calculations carried
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40 _ . : 5 :
out™ with a transversal distribution of the form

W(p¥) dp} = const p*¥2 exp(-p*/py)
raise doubt on the conclusions obtained by Daiborg and Rozental.

On the other hand, we have just seen that the two-temperature model
also gives two peaks.

The fact that all these models predict two-peaked angular distribution
does not exclude the existence of two fireballs. In fact the two-temperature
model in particular, could be related to an unknown number of fireballs
where we have an unknown velocity distribution in the CMS.

With Eq. 56 for one fireball moving in the CMS with a Lorentz
factor ¥}, we could obtain the log tan (6*/2) distribution for an infinite
number of fireballs with a distribution cp(yb) dyy, for their Lorentz factor
in the form

o(vp)

If we use for cp(\(b) the dlstr1but1on obtained by Hagedorn for his continuum
infinite -fireball model we find*! a one-peaked distribution for both "newly
created particles" and "through-going particles."

Since one- and two-peaked features are both present in cosmic-ray
interactions, we should look for a model that can account for this joint
behavior. A possibility of achieving this could be that of adding convective
motion to Hagedorn's model.*!

Now we shall concentrate on obtaining some predictions oninelasticity
and multiplicity distributions from the two-temperature model.

F. Inelasticity Distribution

One of the main tasks of any model of high-energy interactions is to
predict the behavior of the particle production at cosmic-ray energy.

After having interpreted the two-temperature model, we shall com-
pare it with other models, say the two-fireball and the CKP models, at such
high energies. One way of doing it is to obtain the inelasticity distribution
as predicted by each model.

For simplicity, the pion inelasticity distribution in the CMS, W(K;)
will be obtained. Given the 10ng1tud1nal and transverse momentum distri-
butions in the CMS, say f(pL) dpL and g(pf) dpt, and the mean multiplicity
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ng corresponding to the energy under consideration, 1000 jets are generated
and the frequency distribution for the pion inelasticity is calculated as

follows:

FREQUENCY

400

360,

320

200

160

80

40

o
P Py :
Obtain F(pZ) = f z f(x) dx, G(p;:") = f g(x) dx, and their
0 0

] £ -1
inverse F~! and G~

Generate n_ uniformly distributed random numbers §;, &, ..., &,

where n; is even.

Calculate nn/Z f-distributed random numbers pzi = F'I(Ei),

1 :l o e%s nn/Z, and n.,.,/Z g-distributed random numbers p,’:i =
G(gy),
B Ty L

Calculate the amount of CMS energy that goes into pions, E;

Calculate the value of the inelasticity, and repeat the procedure.

The energy-momentum conservation re-
quirements are automatically satisfied,
since we are sampling from the distri-
butions f(pz) and g(pf). In fact, in the
TWO-FIREBALL MODEL, actual calculations, only about 0.5% of
e the jets had to be rejected. For the two-
fireball model, E is calculated in the
RFB with an isotropic particle distribu-
tion, i.e., f(pz) = g(pf:), and then E¥ in the
CMS is obtained by multiplying by the
Lorentz factor y for going from RFB to
the CMS. Since the two-fireball model
does not give any momentum distribution,
the choice g(p?) = Wz((p:‘) given by Eq. 51
CKP MODEL was taken and y was selected in such a

: TWO-TEMPERATURE
: MODEL

way that the mean values of K;“T given by
the two-temperature and the two-fireball
models were the same. The resulting dis-
5 tributions are shown in Fig. 12. They are
very different for the two-temperature and
3k the CKP models. The mean value predicted
s by CKP is about 0.57, and that predicted by

¥ —,  the two-temperature model is about 0.37.
g Experimental observations®® seem to favor
the last one.

S

3
iy
@

Fig. 12

Pion Inelasticity Distribution in the CMS for Figure 13 shows the inelasticity dis-

Different Models at a Primary Energy of
3000 GeV. ANL Neg. No. 145-1206 Rey. 1,

tribution for the two-temperature model at
different values of the primary energy.
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= Pion Inelasticity Distribution in the CMS
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o ferent Values of Primary Energy. ANL
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G. Multiplicity Distribution

et q(nIE:T) dE;"T be the conditional probability of producing n pions
(mt,m=, m°), given that a CMS energy EX € (EF, Ef+dE¥X) is left to the pion
component. That is to say, if Eg" is the total energy available in the CMS
and K.lfr is the inelasticity, then

i R
»

If W(KT’!‘,) dK:‘T is the probability that an event occurs with inelasticity K?T‘ e

e +dK:,), then the multiplicity distribution is given by

*
p(n) = El: /OE° W(EX/E¥)q(n|E¥) dEX. (58)

Now, suppose that the chance for a particle to be "boiled off" de-
creases exponentially with the energy E; left to the pion component (not
with the total energy E:)

This implies that q(nIET"T‘) is given by a Poisson distribution,

(aEX)™
a(n|E}) dE¥ = —T— exp(-aE7) dE}, (59)

where the mean number o of particles (pions) produced per unit energy
will depend on the total energy E:. However, we do not know this dependence
and, rather, will use o as a parameter to fit the experimental data.
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Introducing Eq. 59 in the integrand of Eq. 58, we obtain

E¥ /EX\ (¢EX)"
0
o) = o5 [ v() T b i (60
E 0 A
0 “p

This probability has been computed with the inelasticity di.stribution obtaifled
with the Monte Carlo method at 100 GeV (see Fig. 13). and is represented in
Fig. 14 for several values of the parameter o. The h1'stc.)grarn represents.
the experimental data of Abraham et a_l.42 For other fittings to the experi-
mental data, see Imaeda.*?
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Fig. 14. Pion Multiplicity Distribution at Different Values of the
Parameter o, Compared with Experimental Results
(histogram). ANL Neg. No. 145-1268.

We have not been able to prove the assumption (Eq. 59), but there
are other indications that it may not be too far from reality.** We feel that
the answer may be in constructing a stochastic process model for the con-

ditional probability q(nlE:) based on the ideas of the statistical thermo-
dynamic approach.

H. Conclusions
ptalle bt

Several semiempirical models of high-energy interactions predict
a double-peaked angular distribution in log tan (6% 2) of the produced par-
ticles. This feature is most pronounced in the two-temperature model. Up

however, the two-peaked feature is not an exclusive characteristic of the
two-fireball model.
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The two peaks disappear as the incident energy is decreased (i.e.,
T = Ty). This observed feature has a completely natural explanation in
the context of the two-temperature model.

The transverse temperature, T, decreases as the mass of the
secondary increases. This corresponds to a decrease in the thermal
motion of the particles being "boiled off." Then, as T, grows, the angular
distribution in log tan (6*/2) will become more and more flat, turning
toward a single peak. However, this situation will not be reached because,
since the lowest mass particles produced are pions, T, has an upper bound.

The two-temperature and the two-fireball models agree quite well
on the shape of the pion inelasticity distribution at cosmic-ray energies.

Infinite-fireball models seem to lead to single-peaked log tan (9*/2)
distributions.

A model that gives the correct single or double peaked behavior
in the correct circumstances is still unknown.

V. THE NUCLEAR ACTIVE COMPONENT OF
EXTENSIVE AIR SHOWERS

A. Introduction

In contrast with the three-dimensional electron-photon cascade
problem whose solution has been extensively discussed, the three-
dimensional nucleon-pion cascade equations have not been solved analyt-
ically, due to the complexity of the production cross sections. However,
some Monte Carlo calculations have been made.*>%6

A new concept on the particle generation, based on the number of
pion links found in tracing a particle back to the primary cosmic ray, in-
troduced by Narayan and Yodh*’ and later modified by Dedenko,*® has been
successful as a fast semianalytical method to solve the nucleon-pion equa-
tions in one dimension.

In this chapter the "pion links method" will be developed in order
to obtain the lateral and angular structure functions of the nuclear active
component of cosmic-ray showers. Computed results will be presented
for the lateral structure function for showers produced in the atmosphere
and in the ionization calorimeter.

Several groups*”™®! are engaged in measuring the total nuclear cross
sections at cosmic-ray energies due to the importance that the behavior of
this quantity at very high energy has in establishing the validity of different
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Solutions for the lateral structure function of

elementary particle models.
ccurate as possible, are

the nuclear active component of cosmic rays, as a
of great importance to those experiments.

B. Mathematical Formulation

Let N(E, r, 8,t) dEdrdf and I(E, r, 6, t) dEdrd6 be the number of
nucleons and pions, respectively, in the energy interval (E, E+dE), in the
radial vector interval (r, r+dr) and in the angle interval (6, f+dB), at a

depth t, produced by a primary of energy E,. The variables x and 6 are
illustrated in Fig. 15. The quantities of

interest are the radial and angular structure
functions given by

N(E, r,t) = [[ N(E, x 81)d8
and

x Ny(E,8,t) = [[ N(E,z,8.t)dr

for the nucleons, and the same for the pions,
say I;(E, r, t) and II,(E, r,t). The production
cross sections for each individual high-energy
collision are given by SAg(E, E', 6-8') dEdS,
which represent the number of particles of
type A in the energy interval (E, E+dE) and

in the angle interval (8, 8+d8) produced by

a particle of type B, energy E', and direction
of motion B', given that a collision occurred
with a nucleus of the absorber.

zmt

Fig. 15

Spatial and Angular Coordinates for the ,
Three-dimensional Cascade. ANL Neg. We will assume that SNN and SN
No. 145-1250. are homogeneous functions of the energy

variables, that is to say, they are of the
fo.rm (1/E')SNN(E/E', 8- 8') and (1/E")Snn(E/E', 8- 6'), respectively. There
will be no such restriction on SpN and Spq.

If t is measured in units of the nucleon-interaction mean free path

ANy N(E, 1,0,t) and II(E, 1, 8, t) satisf i i
) » I, 9, it ) y the followin, -
differential equations: e Pstem ot st

(2+e-2)NE.280) = -NEL.0.0
*/E it [[ dg'[(1/1‘:')5NN(E/E'.§-_§')N(E‘,L,Q‘,t)

AN 1

+, & Swi(E/E 8- 0) (. £,

(L5}

""] (61)
(Contd.)



and

where B is the decay parameter of the charged pions.

If we introduce the double Fourier transform

HE, p, A t) = 4%12 f]]/ expli(z-p+6-A)]£(E, r,0,t) drd,

the nucleon lateral structure function will be given by

N(E, r,t) = ﬂN(E,;,Q,t)dQ

o
:f anICT(E,p,O,t)Jo(rp)dp,J
0

where the relation

Jo(rp) = -21?/ e 1TP cos ¢ do
0

has been used.
By the same arugment,
(o]
Wello, L)) = f 2mAN(E, 0, A, t)Jo(6A) dA,
0

and the same is applicable to II,(E, r,t) and II,(E, 6, t).

51
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(64)
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If the operators [pp are defined by
= ~
TAgB(E, p. A t) = f dE'Spg(E, E', A)B(E', p, A, t) (65)
4 E

the system of Eqs. 61 is transformed by the double Fourier transform
(Eq. 62) into

d 0 & N I

L o iy N(E, p, A, t) = — I'npll(E, p, A, t);

<bt P N NN) ( P A ) B Nm Lt

B AN BN N R bt = o s (66)
Bt = B Ay Bt AT s i o

To obtain the lateral structure functions, we must take the solution of
Eqs. 66 at A = 0. To achieve this, the vector A is first decomposed in
two components, one parallel and one perpendicular to p, say A; and A,.
Then A, is put equal to zero in the resulting equations, and finally the
following change of variables is made:

Ay

S ol B e
BNl

The resulting system of equations is

d - AN 2
(g“ N FNN) N(E, p, p(y-t),t) = 3= TN UE, p, p(y - 1), t);
™

. (67)
> "N, B M A o
<5¥+ﬁ+ﬁ-ﬁ l"m) I(E, p, p(v-t),t) = T NN(E, p, p(y - t), t).

The solutions of the system of Eqs. 67, taken at Y = t, will yield KJI(E, o, t)
and II,(E, p, t) which, by Eq. 63, are the Hankel transforms of the nucleon
and pion structure functions, respectively.

The Hankel transforms for the angular structure functions can be
obtained directly by making P = 0in Eq. 66.

The numerical solutions of the system (Eqs. 67) at y = t will be a
pair of three-dimensional matrices whose elements are given by

Ni(E;, pj tk) and I(E;, Pj» ti).

Using the method of the pion links, to be discussed in Section C below, we
can obtain these matrices by slices determined by energy intervals.



C. The Pion-link Method

One characteristic of the high-energy interactions is that only a
small number of nucleons is produced, and they carry away a considerable
amount of energy, while a large number of pions share the rest of the
energy. No forward pion has been observed carrying a predominant amount
of the available energy. This fact suggests the following way of defining
the particle generation in the nuclear active component of a cosmic-ray
shower: A particle (nucleon or pion) will be regarded as belonging to the
nth generation if, when traced back to the primary cosmic ray, exactly
n pion links are found.

Let E101,max be the maximum energy observed among pions of the

zeroth generation, EF,max the maximum for the first generation, and so on.

Analogously, let Etly\lmax’ E}\Imax' ..., be the maximum energies for the dif-

ferent generations of nucleons. Then, if

M T - ™
AE; = Ei-l,max Ei,max
and
I R L
AEi ® Ei-l,max Ei,max’

in the slices determined by the energy intervals AE%\I and AET Egs. 67
become

b ~
(a“-rNN) NIXE, p,t) = 0O

—_—

(e
B A, Kt

>H}“(E,p,t) = TNnM(E, p. t),

and, in general, for the nth slice with n 2 2,

d o AN A
(a-i-l = FNN) Ngn)(E, P, t) = T l“NﬂHI(n ”(E, P, t)
™

and k (69)

A A
3 "N, B\im - N @ N fm-»
<a+ﬁ+a>nl (E,p,t) = ToNNI™(E 0, t) + o Pl V(E, 0, 1)

The integration domains of the operators ppg must be the same as the
energy domains on which each function is defined. The second equations
of Eqs. 68 and 69 are simple linear differential equations of the first
order, and their solution is
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t 8/E A A
A AN T N m)
I{*(E, p, t) = exp("ﬁ ) / dT(t—) exP<xn T)[rnN M. e, 7)
0

A B3
N .6, (70)
™

Then it is clear the Eq. 68 can be solved firstAfor Nl(l), and this will
determine the function II{'’ which determines N®) in Eq. 69, and so on.

It only remains to solve the first of Eqs. 69. This is an integro-
differential equation with the general "source term"

A
S N A
HPD(E, p,t) = 3= INpl"T(E, 0. %)
™

A E

s -
N dE 2 2
= —f = Snp(E/E', p, t)IP V(B p, ),
mYE

which is different for different slices. Because of the assumed form of

SNN and Sy, the first of Egs. 69 can be solved by using the Mellin trans-
form defined by

g(s) = ‘/;mxsg(X)dxy slalin L ‘{; i ds.

Using the initial condition

N(E, 7, ) |¢= = 6(E - Eo) M,

Sy

we obtain the solution

- 1 S+ie 1 T
N{PUE, p, t) = Z{/ = exp[ff Snn(g, p. t')gS dqdt! -tJ
§ -1
0 0

=i

x [E§+F{T™~1(s, p, )] ds, (71)

where

I S 1
(n—1) A ~
el / 95 $iZan g Y exp{- [f / SNN(a, p, 7')q® dadr - T}}
0
0 0

(72)



For the Hankel transform of the integral lateral structure function given by

NPSE, o, t) f V(R o, t) dE!

E

Il
5l
—
o;\
o
8
IKL
«»
L"'J
m
o
b
]

]
|:/ f Snn(a o, t')q® dgdt' - t:|
5 Yo

x [Ef + PP (s, p, t)], (73)

the integration can be carried out by the saddle-point method and the
result is given in the parametric form

1AL
exp[f/. §NN(q.p,t')q5 dth'-t:l[E§+F§n'”(s,p,t)]
0 0
T ‘ (74)
an_zf/ éNN(q,p,t')qs dth‘+Ln[E§+F§n'”(s,p,t)] ok
5% |y J, s2

> 1 ot 3 =1 > p
gf [ Snn(a, p, t')qS dgdt' + [E§+F§“ "(s,p,t)] [EUS An Eo+ 35— FP (s p,t)] -4nE = é
S (75)

D. Particles Production Cross Sections and Results

In the present calculations, the following production cross sections
52

were chosen: .
&
SNN(E: Eo, 6) = n6(E - E) %, (76)
8(0
Sn(E: Eo, 6) = 8(E - 1Eg) 49, (77)
and
AR exp[_E<L+_6_)], | (78)
2mpac®T R EE
where
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is the mean pion multiplicity, and

K
T

T = L gy
o

is the mean energy carried out by a single pion.

The expression for sm‘r(E' Ey, 6) is the same as Eq. 78 with different
value of the inelasticity K. The values chosen for the parameters are
given in Table III.

TABLE III. Parameters for Production Cross Sections

n Y Ul PoC Kp (nucleon) Kp (pion) o

2 0.5 0.002 0.18 GeV 0.5 1.0 207

. Using these production cross sections the functions SrrN[E' E', p(y-t)]
and Sy[E, E', p(y-t)] in the integrand of Eq. 5 take the form

5 - -3/2
STL AT exp[-(a/xn)m/p)a/ﬂ& +[poc - "(VE ”] } . (79)

2mpge K

This will be responsible for the radial dependence of the lateral structure
function. Because the factor oz/Kﬂ is smaller forApion-nucleon scattering
than for nucleon-nucleon scattering, the term I“m-,Hl(n)(E, p,t) is the one that
grows faster, so even a low-energy nucleon can produce a considerable
number of particles.

Since the main difference among several multiple particle produc-
tion models is inthe transversal momentum distribution, Eq. 79 will be dif-
ferent for each model and will probably cause appreciable differences in the
lateral structure function, providing thus a way to test those models.

A FORTRAN IV program, discussed in the appendix, has been written
following the scheme of Section C above. The different slices were taken
such that AE, = E, - En 1 0E; = Eq,1 - En,2, etc., where

Bl = (Kn/o’)Eg“' En,. = (KTT/Q)E‘IS'I‘/,41’
.and so on, but the results are not very sensitive to the choice of the energy
intervals. In each slice, the "age' parameter s is computed as a function
of E, p, and t by finding the roots of Eq. 75. However, the contribution from

A i 5
FNﬂnln,)\EE’ P, t) is negligible at energies lower than about 105 GeV.4? In that
case, N is independent of p, and by Eq. 63,

M(E, r,t) = N(E, t) M.



Results were obtained for primary nucleons of 10%, 10°, and 10¢ GeV for
showers developing in the atmosphere, as well as in an ionization calorim-
eter. They are represented in Figs. 16-22. All figures refer to the number
of particles with energy E > 2 GeV.

S

MONTE CARLO
CALCULATION 46
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Fig. 16. Integral Lateral Structure Function for Fig. 17. Integral Lateral Structure Function for
the Atmosphere at Ey = 106 Gev. the Ionization Calorimeter at Ep =
ANL Neg. No. 145-1252 Rev. 1. 106 Gev. ANL Neg. No. 145-1249.
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Fig. 18. Integral Lateral Structure Function for Fig. 19. Integral Lateral Structure Function for
the Atmosphere at Eg = 105 Gev. the Ionization Calorimeter at Ep =
ANL Neg. No. 145-1251. 105 GeV. ANL Neg. No. 145-1259.
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Fig. 20. Integral Lateral Structure Function for Fig. 21. Integral Lateral Structure Function for
the Atmosphere at Ey = 104 GeV. the Ionization Calorimeter at Eg =
ANL Neg. No. 145-1248. 104 GeV. ANL Neg. No. 145-1253.

Fig. 22

Number of Particles per Unit Area as a Function
of the Primary Energy at Different Values of r.
ANL Neg. No. 145-1247 Rev. 1.
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Calculations were attempted using the particle-production cross
sections given by the two-temperature model. Unless the functions involved
are approximated by simpler ones, the computer time becomes very large.
We hope to make further calculations in this direction in the future.

E. Discussion and Conclusions

The pion-link method has proved to be a useful guide in the physical
interpretation of the development of the nuclear active component of one-

dimensional extensive air showers.*” It gives a most important role to
pion-nucleon collisions.
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Comparing the lateral structure function for the same primary
energy in the atmosphere and in the ionization calorimeter, we see that
in the last case the curves are more flat. This is a consequence of the
fact that the decay affects more those pions that are farther away from
the shower axis and are less energetic. As could be expected, the effect
is smaller at bigger depth.

Figure 22 shows that the number of particles per unit area grows
faster with the primary energy for small values of r, where the Sqaqn con-
tribution is more important. Figure 16 compares this with the Monte
Carlo calculation of Ref. 46. The Monte Carlo curve drops out too fast
compared to the measurements of Abrosimov et al.,?® Nikolsky et al.,*
and Chatterjee et al.®®> The curves calculated here are in good agreement
with those experimental data. Finally, the method used here has proven
to be fast: For E; = 108 GeV, the computing time is less than 30 min.



60

APPENDIX

A FORTRAN IV Program to Compute the Lateral Structure Function
of the N-component of Extensive Air Showers

1. Definition of the Most Relevant Quantities Involved in the Program

EO = Energy of the primary particle (E,)
BETA = B = decay parameter of pions
POl L] - RiE T06)

PIT(L, 7, K) = f(E;, 0y, o)

E,
P TINT(T, T, K) = fE N(E,T]j,tk) dE
i

b
PEETNR (T == f I(E, M3, t;.) dE
E; It
Hl = Ej - E;;, (different for each slice)
3
RO = = e-'ﬂ/lo
S g
H3 = tepn =

S(E,ETA, T) = roots of Eq. 75

£ B/E A
4 1 N A Koo e
L -f dT(t) exx)(f ){anan’(E, n, T)+E P I{*"D(E, 7, T)}

0 m

of Eq. 70

1
SNNT(S, RO, T) :f Snnf(a, M, t)gS dq
0

o)
SNNTI(S, RO, T) = 5 SNNT(S, RO, T)
2

D
SNNT2(S, RO, T) = ESNNT(S,RO,T) :

1
SNPIT(S, RO, T) :f SNnla, M, t)qs dq
0



SNPITI(S, RO, T) = b% SNPIT(S, RO, T)

bz
SNPIT2(S, RO, T) = F SNPIT(S, RO, T)
S

SPINT(E, E1, RO, GAMMA, T)

1 o
= [E [[ SyN(E, EL, 8) exp(in,6,) deldez]

A=p(y-t)
SPIPIT(E, E1, RO, GAMMA, T)
1 @®
= [E ff Syr(E, E1, 8) exp(ih,6,) deldez]
= Ay=p(y-t)
FT = F® (s, M, t) given by Eq. 72
Al = —DFT
Os
2
FT2 = 2 rT
ds?
A ® .
PITT = Ii(s, M, t) :f BT (T el
0 »
o)
PITTl = — PITT
0s
bZ
PITT2 = — PITT
Os
o (TR
YNT = T_NT(E, 1, 7) + ﬁl’m-,ﬂl (E, M, T) of Eq. 70
AN ﬁ(n-l)
YNTIL = Tn_r“ﬂ i AUESNT)

YNT2 = TpnN{AE, 1, 7).

N1, N2, and N3 are the first, second, and third dimensions, respectively, for
any matrix involved in the program.
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2. Description of the Program

We start by reading the data E,, B, H2, H3, N2, and N3 and initialize
the matrices involved.

The variable ITER numbers the different slices of energy. In the
first one, FT, FT1, and FT2 are set equal to zero because there is no
contribution from the term I'y,ll;.

Equation 75 is solved in each slice for S(E, 7, t) by a modified Newton-
Raphson method using the values of FT, FT1, and FT2 obtained in the pre-
vious slice. An alarm signal is printed out if the subroutine iterates more
than 20 times to find a root.

All the integrations involved in the program were performed by using
the trapezoidal rule.

The output consis}s of the matrices li’T, PIT, PTINT, and PITINT.
The last two represent {Nl(>Ei, Mj» ti)} and {II,(>E;, M;j» t1)}, respectively,
and they must be integrated according to Eq. 63 to obtain {N,(>E;, Ut 1)}
and {H1(>Ei, 'I]J-, tk)}. This is achieved by using an auxiliary interpolation-
integration program.

Below we give a flow chart (Fig. 23) and a listing of the FORTRAN IV
main program and subroutines.



N2, N3

READ EO, H2, H3, BETA,

f

INITIALIZE PITINT, X

PIT , N1xN2xN3 MATRICES

RESET INITIAL E, ETA , T

=

» PT,

CALL SUB2 , OBTAIN PINT
AND THEN PIT(I,J,K) ,
N1 x N2 x N3 MATRIX
[ ITER=1 , EEO= EO | i
COMPUTE PITINT (I,J,K) ,
EPION = 0.185 EE03/Y%, DELTAE = Sl e
EEO-EPION, H1=2EPTON, N1=1DELTAE/H1 *
PRINT AND PUNCH PT ,
PIT , PTINT , PITINT
ITER23 e B
? H1
EEO=EEQ - DELTAE
NO ITER = ITER + 1
TTER>T B
?
? NO
NO
I FT = FTL = FI2 = 0 =

OF T

COMPUTE S(E,ETA,T) FOR N1
VALUES OF E ,N2 VALUES OF ETA , N3 VALUES

=

CALL SUB3

YES OBTAIN FT,
FT1 ,FT2

FOR ALL VALUES
OF E,ETA,T

COMPUTE PTINT(I,J,K)
N1 x N2 x N3 MATRIX

I

COMPUTE PT(I,J,K)
N1 x N2 x N3 MATRIX

Fig. 23. Flow Chart for FORTRAN IV Program
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C SUBROUTINE SUB3(FT,FT1,FT2,I1,J,K,S,ETA ,T)

CALL SUB6 ;OBTAIN PITT, PITT1l ,PITT2 I

COMPUTE FT ,FT1 ,FT2

[

(SUBROUTINE SUB6 (PITT,PITT1,PITT2,1,J,L,S ,ETA,T))

COMPUTE N1OLD , THE VALUE OF N1
FOR THE PREVIOUS SLICE

f
]

COMBUTE FITE v, PITIL ", 'FLTT2

RETURN

@ SUBROUTINE SUB2 (PINT ,I,J,K,E,ETA ,T) )

CALL SUB7 , OBTAIN YNT ]

COMPUTE PINT j
RETURN

( SUBROUTINE SUB7 (YNT,I,J,L,E,ETA,T) j

[ COMPUTE N1OLD ]

L COMPUTE YNT1 , YNT2 , YNT ]

Fig. 23 (Contd.)
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FUNCTION S(E, ETA, T)

CALL SUB3 ,
OBTAIN FT, FT1, FT2

COMPUTE ROOT S
WITH ERROR < EPS

( RETURN )

Fig. 23 (Contd.)

3. FORTRAN IV Program

THIS PROGRAM SOLVES NUMERICALLY THE THREE DIMENSIONAL NUCLEON
CASCADE EQUATIONS

FUNCTION SUBPROGRAMS MUST BE SUPPLIED FOR THE FUNCTIONS SPINT(E,El),
SPIPIT(EsEL) 9 SNNT(S) s SNNTL(S)ySNNT2(S) 9 SNPIT(S)sSNPIT1(S),SNPIT2(5)

[sNeNeNaNeNaKel

READ IMPUT AND COMPUTE STARTING VALUES
READ 10,E004H2,H3,BETA,N2,N3
10 FORMAT (4E12.0/215)
DIMENSION PT(100410515)4PIT(100410415),P(100510,415),
1 FCN1(100),FCN2(100),PTINT(100,10,15) ,X(100,10,15)
& +PITINT(100,10,15)
COMMON/Z/PT4PIT¢N1yN2yN3,EEOyH1,H2yH3,BETA
COMMON/Z2/1ITER
COMMON/Z3/EOyI4JyK
COMMON/25/U0U
EO=EOC
ROO=1.1
T0=0.0
DO 12 I=1,100
DO 12 J=14N2
DO 12 K=1,N3
PITINT(1,J4K)=0.0
X{IyJyKI=1.9
PT (1,J4K)=0.0
12 PIT (14J4K)=0.0
C EXTERNAL COMPUTING LOOP
ITER=1
EEO=E00
15 EPION=0.185%EE0**0.75
DELTAE=EEO-EPION
H1=2.,0*%*EPION
N1=0.5*DELTAE/H1
IF(ITER.GE.3) N1=DELTAE/H1
IF(ITER.GT.1) GO TO 20



C THE FOLLOWING 3 CARDS MUST BE REMOVED WHEN PIONS CONTRIBUTION TO NUCLEONS
C CANNOT BE NEGLECTED
FT=0.0
FT1=0.0
F12=0.0
€ INTERNAL COMPUTING LOOP
20 E=EE0-0.5*DELTAE
IF(ITER.EQ.1) E=E/2.0
IF(ITER.EQ.1)N1=N1/2
IF(ITER.GE.3) E=EEO
DO 100 [=1,4N1
E=E-H1
UU=X(I,1,1)
RO=R0O0
DO 100 J=1,N2
RO=R0O-H2
ETA=-1000.0*ALOG(RO)
UU=X(T4Jy1)
T=T0
DO 100 K=1,N3
T=T+H3
U=S(E,ETA,T)
X(I,JsK)=U
uu=u
TERM1=(EOQ/E)**U
ALEO=ALOG(EO)
IF(ITER.EQ.1) GO TO 30
THE FOLLOWING CARD MUST BE USED ONLY WHEN PIONS CONTRIBUTION TOD
NUCLEONS CANNOT BE NEGLECTED
CALL SUB3(FT,FT14FT2,14JsKyU,ETA,T)
TERM=(1.04+FT*EQ**(-U) ) **(-1,0)
DEN=EO**(-U) *TERM
DERIV=TERM*ALEO**2+F T2*DEN-(TERM*ALEO+FT1*DEN) *%2
IF(DERIV.LE.0.0) GO TO 30
GO TO 31
30 CONTINUE
DERIV=0.0
31 CONTINUE
DENOM=U*(6.2832%(SNNT2(U,ETA,T)+DERIV+1.0/U**2))*%0,5
100 PTINT(I+JyK)=EXP(SNNT(U+ETA,T)-T)*(TERML+FT*E**(-U) ) /DENOM
NN1=N1-1
DO 98- I=2,NN1
DO 98 J=1,N2
DO 98 K=1,N3
PT(I+JsK)=0.5%(PTINT(I+14J,K)=PTINT(I-1,J,K})/H1
IF(PT(I9JsK)eLEaOO) PT(IJsKI=PT(I-1,J,K)
98 CONTINUE
D0 99 J=1,N2
DO 99 K=1,N3
99 PT(14J4K)=PT(2,J4K)
DO 97 J=1,N2
DO 97 K=1,N3
97 PTIN1yJyK)=2.0%PT(NNL1,yJ4K)=PT(N1=2,J,K)
E=EE0-0.5*DELTAE
IF(ITER.EQ.1) E=E/2.0
IF(ITER.GE.3) E=EEOQ
DO 101 I=1,4N1
E=E-H1
RO=R0O0
DO 101 J=1,N2
RO=R0O-H2
ETA=-1000.0*ALOG(RO)
T=T0

(g2}
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DO 101 K=1,N3
T=T+H3
CALL SUB2(PINT,14J4KyE4ETA,T)
101 P(IyJyKI=EXP(-0.665%T)*PINT
DO 134 [=1,N1
DO 134 J=1,N2
DO 134 K=1,N3
134 PlT(levK)=P(I'JvK'
M=ITER+1
DO 105 J=1,4N2
DO 105 K=1,N3
SUM=0.0
DO 104 I=1,N1
104 SUM=SUM4PIT(I,J,K)
PITINT(MyJ,K)=PITINT(M=1,JsK)+HL*SUM
105 CONTINUE
PRINT 123
123 FORMAT(20H SIGNAL XXXXXXXXXX)
PRINT AND PUNCH OUTPUT
DO 222 K=1,4,N3
PRINT 7774N1l,H1
DO 222 [=1,N1
PRINT 888, (PTINT(I4J4K)J=1,N2)
222 CONTINUE
DO 999 K=1,N3
PRINT 7774N1,H1
DO 999 I=1,N1
PRINT 888, ( PT(I,J4K)J=14N2)
999 CONTINUE
DO 333 K=1,N3
PRINT 555,N1,H1
DO 333 I=1,N1
PRINT 888, (PIT (I,J,K)eJ=1,N2)
333 CONTINUE
PRINT 899
DO 666 K=1,N3
PRINT 888, (PITINT(MyJyK)J=1,N2)

666 PUNCH 889, (PITINT(MysJsK)sJ=1,N2) .
555 FORMAT(20H P IONS 24HN1= ,13,4HH1= ,E12.4)
T77 FORMAT(20H NUCLEONS +4HNL= ,13,4HH1= ,E12.4)

888 FORMAT(10E12.4)
889 FORMAT(5E12.4/5E12.4)
899 FORMAT(24H PION INTEGRAL SPECTRUM)
EEO=EEO-DELTAE
ITER=ITER+1
IF(EPION.LE.2.0) GO TO 21
GO TO 15
21 CONTINUE
RETURN
END

SUBROUTINE SUB3(FT,FT1,FT2,1,J9KySyETA,T)
COMMON/Z/PT4PITyN1yN2,N3,EOyH1 yH2yH3,BETA
COMMON/Z2/1TER

DIMENSION PT(100,10,15),PIT(100,10,415),FCN(20) FCN1(20),FCN2(20)
SUM=0.0

SUM1=0.0

SUM2=0.0

DO 200 L=1,K

X=L

Y=H3%*X-H3

CALL SUBG(PITT4PITT1,PITT2,14JyLySsETA,Y)
FACT=EXP(SNNT(S,ETA,Y)-Y)
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200

V1=SNPIT (S,ETA,Y)

V2=SNPIT1(S,ETA,Y)

V3=SNPIT2(S,ETA,Y)

U1=SNNT1 (S,ETA,Y)

U2=SNNT2 (S,ETA,Y)

FCN(L)=V1*FACT*PITT
FCNL(L)=FACT*(V2*PITT+V1*PITT1- VI1*PITT*Ul)

FCN2(L)=FACT*(V3*PITT+2,0%V2*%PITT14VI*PITT2-UL*(V2*%PITT+V1*

1PITT1)+V1*( Ul**2- U2))

49

50

51

50

51

IF(K.EQ.1) GO TO 50

IF(K.EQ.2) GO TO 51

KK=K-1

DO 49 L=2,KK

SUM=SUM+FCN(L)

SUM1=SUM1+FCN1(L)

SUM2=SUM2+FCN2(L)
FT=H3/2.0%(FCN(1)#2,.0*SUM+FCN(K)) *0.665
FT1=H3/2.0*%*(FCN1(1)+2.0*SUM1+FCN1(K))*0.665
FT2=H3/2.0%(FCN2(1)+2.0*%SUM24FCN2(K))*0.665
RETURN

FT=0.0

FT1=0.0

FT2=0.0

RETURN

FT=H3/2.0*%(FCN(1)4FCN(2)) *0.665
FT1=H3/2.0%(FCN1(1)+FCN1(2)) *0.665
FT2=H3/2.0%(FCN2(1)+FCN2(2)) *0.665

RETURN

END

SUBROUTINE SUB6(PITT,PITTL,PITT2,14JsLySsETA,T)
COMMON/Z/PTyPITyN1,N2,N3,EOyH1,H2,H3,BETA
COMMON/22/ITER

DIMENSION PT(100,10415),PIT(100,10,15),FCN(100),
1 FCN1(100),FCN2(100)

SUM=0.0

SUM1=0.0

SUM2=0.0

OLDEO=(E0/0.185) **]1,333
N10LD=0.25*0LDEO/EO

IF(ITER.EQ.1) N1OLD=N10OLD/2

IF(ITER.GE.4) N1OLD=2%N10LD

DO 50 M=2,N10LD

X=M

Y=X*Hl-H1

U=ALOG(Y)

FCN(M)=Y*%*S*P[T(M,J,L)

FCNL(M)=FCN(M)*y

FCN2(M)=FCN1(M)*yU

NN=N10LD-1

DO 51 M=2,NN

SUM=SUM+FCN(M)

SUM1=SUM1+FCN1(M)

SUM2=SUM2+FCN2(M)

PITT =H1/2.0%(2.0%SUM +FCN (N10OLD))
PITT1=H1/2.0%(2.0*SUM1+FCN1(N1OLD))
PITT2=H1/2.0%(2.0%*SUM2+FCN2(N1OLD) )
RETURN

END
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53

51

52

50

52
53

49

51

SUBROUTINE SUB2(PINT,15J,KyEsETA,T)
COMMON/Z/PT,PIToN14N2,N3,EO,H1 HE H3,BET
COMMON/Z2/1ITER e e e
COMMON/Z4/TT

DIMENSION PT(100,10,415),PIT(100,10,15),FCN(20),FCNL1(20),FCN2(20)

T7=T7

SUM=0.0

DO 50 L=1,K

X=L

Y=X*H3-H3

CALL SUBT(YNT,I,JsLyE,ETA,Y)
FCNI(L)=(Y/T)**(BETA/E)*EXP(0.665%Y) *YNT
IF(K.EQ.1) GO TO 51

IF(K.EQ.2) GO TO 52

KK=K-1

DO 53 L=2,KK

SUM=SUM+FCN(L)
PINT=H3/2.0%(FCN(1)+2.0*SUM+FCN(K)) *0.665
RETURN

PINT=0.0

RETURN

PINT= H3/2.0%(FCN(1)+FCN(2)) *0.665
RETURN

END

SUBROUTINE SUBT(YNT,I,JsLsE,ETA,T)
COMMON/Z/PT4PIToN1,N2yN3,EOsH14H2,H3,BETA
COMMON/Z2/1ITER

COMMON/24/T7T7

DIMENSION PT(100,10,415),PIT(100,10,15),FCN(100)

IF(ITER.EQ.1) GO TO 52
OLDEO=(E0/0.185)%*1,333
N10LD=0.25*0LDEO/EQ
IF(ITER.GE.4) N10OLD=2*N10OLD
H10LD=2.0%*EO

SUM1=0.0

NN=N10LD-1

DO S50 N=2,NN

X=N10LD-N

Y1=EO+H10LD*X

V1=SPIPIT(E,Y1,ETA,TT,T)
V2=PIT(N,J,L)
FCN(N)=V1*V2
SUM1=SUM1+FCN(N)
YNT1=H10LD*(SUM1-FCN(2))
GO TO 53

YNT1=0.0

CONTINUE

SUM2=0.0

NN=1

IF(NN.LE.2) GO TO 51

DO 49 N=1,NN

x=N

Y2=E4H1*X
UL=SPINT(EsY2,ETA,TT,T)
U2=PT(I-N+1yJsL)
FCN(N)=U1*U2
SUM2=SUM2+FCN(N)
VNTZ-HIIZ.O‘(Z.O‘SUNZ—FCN(ll—FCN(NNl'
YNT=YNT14YNT2

RETURN

YNT=YNT1

RFETIIRN
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52

53

51
50

200

FUNCTION S(ELETA,T)
COMMON/Z/PT4PITyN1,N2,N3,EEOsH1yH24H3,BETA
COMMON/Z2/ITERAT
COMMON/Z3/EQy14J4K
COMMON/ZS5/uWU
DIMENSION PT(100,10,415),PIT(100+10,15)
X=Uu
ALEO=ALOG(EOQ)

ARG=ALOG(EO/E)
EPS=1.0E-4

ITER=1
CONTINUE
FACT=2.0%1.385*%*EXP(-1.385%X)*T+1,0/X-ARG
DENOM=2 .0%(1.385) **2*EXP(~-1.385%X ) *T+1.0/X*%2
IF(ITERAT.EQ.1) GO TO 53
EOX=EO**(-X)
CALL SUB3(FT4FT1,FT2414J9KsX,ETA,T)
DD=1.0+FT*EOX
TERM1=ALEO-(ALEO+FT1*EOX)/DD
TERM2=((ALEO**2+FT2*EOX ) *DD-(ALEO+FT1*EOX ) *%2) /DD**2
FACT=FACT+TERM1
DENOM=DENOM+TERM2
CONTINUE
XNEW=X+FACT/DENOM
DELTA=ABS( XNEW-X)
IF(DELTA.LT.EPS) GO TO S0
IF(XNEW.LE.1.E-10) XNEW=ABS(XNEW) +EPS
IF(XNEW.GT.1.E10) XNEW=EPS
X=XNEW

ITER=ITER+1

IF(ITER.GT.20) GO TO 51
GO 70 52
PRINT 200
CONTINUE
S=XNEW
FORMAT (16HALARM DIVERGENCE)
RETURN
END

FUNCTION SNNT (X,R0,T)

SNNT = 2.0*T*EXP(-1.385%X)
RETURN

END

FUNCTION SNNT1(X,R0,T)
SNNT1=-1,385% 2,0%T*EXP(-1.385%X)
RETURN

END

FUNCTION SNNT2(X,R0,T)

SNNT2= 1.92 * 2,0#T*EXP(-1.385%X)
RETURN

END

FUNCTION SNPIT (S,RO,T)

SNPIT= TH*EXP(-6.21462%S)
RETURN

END


http://SNNT2IX.ro

200
101

il

FUNCTION SNPITL(SsRO,T)

SNPIT1l=-6.21462% T*EXP(~6.21462%S)
RETURN

END

FUNCTION SNPIT2(SsRO,T)
SNPIT2=(6.21462)%%2% T*EXP(-6.21462%S)
RETURN

END

FUNCTION SPINT(E,El,RO,GAMMA,T)

A=16.5

B=2.6

C=5.55

SPINT=A/C*#%2%1.0 /SQRT(EL)*EXP(-B*E/E1**0.75)%*(1.0+
1  (RO*(GAMMA-T)/ (C*E))**2)*%(-1,.5)

RETURN
END
FUNCTION SPIPIT(E+El+ROyGAMMA,T)
A=8.3
B=1.3
C=5.55
SPIPIT= 1.0 /SQRT(EL)*EXP(-B*E/E1**0.75)%(1.0+
1 (RO*(GAMMA-T)/(C*E) )**2)*%(-1,5) *A/C**2
RETURN

END

DIMENSION PITINT(100,10,15),P1(100,10,15),R(10)
N1=1
N2=10
N3=15
DO 200 I=1,4N1
DO 200 K=1,N3
READ 101, (PITINT(I,JsK) ¢J=1,N2)
PRINT 101, (PITINT(I,JsK)¢J=1,N2)
CONTINUE
FORMAT (5E12.4/5E12.4)
R(1)=0.00001
R(2)=0.0001
R(3)=0.001
R(4)=0.,002
R(5)=0.005
R(6)=0.009
R(7)=0.01
R(8)=0.02
R(9)=0.08
R(10)=0.1
DO 201 I=1,N1
DO 201 J=1,10
DO 201 K=10,N3
SUM1=0.0
RO=1.101
NN2=N2-1
DO 202 L=1,NN2
RO=R0O-0.1



SUM2=0.0

DO 203 M=1,100

X=M

ROX=X*0,001

ROXX=RO-ROX

FACT1=PITINT(I,L414K)+(PITINT(I,LyK)=PITINT(I,L#1,K))*10.0%(0.1~

1 ROX)

FACT2=-BESJO(-1000.*R (J)*ALOG(ROXX) ) *ALOG(ROXX }/ROXX

FACT=FACT1*FACT2
203 SUM2=SUM2+FACT
202 SUM1=SUM1+SUM2

PI(I4JeK)=1,06%SUM1
201 CONTINUE

PRINT OQUTPUT

DO 205 K=10,N3

PRINT 300

DO 205 J=1,10
205 PRINT 301,(PI(IyJsK)sI=1,4N1)
300 FORMAT(10H PIONS)
301 FORMAT(10E12.4)

RETURN

END

FUNCTION BESJO(X)
IF(X.GT.3.0) GO 7O 51
U=x/3.0
BESJ0=1.0-2.2499997%U**2+1.2656208%U**4—-,3163866*%U**6+.04444T9%U
1 **8-,0039444%U%*10+.00021%U**12
GO TO 52
51 CONTINUE
vV=3.0/X
F=.79788456-.00000077%V-.0055274*V**2-,00009512%V**%3+.00137237%V**
1 4-.00072805*%V**5+,000144T6*%V%*x6
TITA=X-.78539816-.04166397%V-.00003954*V**%2+,00262573%V*%*3
1 -.00054125%V**4-,00029333%V**5+,00013558%V**6
BESJO=X**(-0.,5)*F*COS(TITA)
52 CONTINUE
RETURN
END
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